MICHAEL ADDITION OF NITROALKANES TO ALYL NITRILE DERIVATIVE: SYNTHESIS OF 1,2,3-TRIFUNCTIONALIZED CYCLOPENTANES

Fatma Saâdi, Aïcha Arfaoui, Hassen Amri*

*Laboratory of Selective Organic Synthesis and Biological Activity, Faculty of Science, El Manar University, 2092 Tunis, Tunisia.

(Reçu le 12 Décembre 2013, Accepté le 19 Février 2014)

ABSTRACT: An efficient conjugate addition of carbon nucleophiles such as nitronate salts to ethyl 5-cyanocyclopent-1-enecarboxylate 3, produces a variety of 1,2,3-trifunctionalized cyclopentanes 4 in satisfactory yields.

Keywords: Cyclic Baylis-Hillman adducts, DABCO, allyl nitrile, Michael addition, nitroalkanes, 1,2,3-trifunctionalized cyclopentanes.

RÉSUMÉ: L’addition conjuguée de nucléophiles carbonés tels que les sels de nitroalcanes sur le 5-cyanocyclopent-1-enecarboxylate d'éthyle 3, conduit à une variété de cyclopentanes 1,2,3-trifonctionnalisés 4 avec des rendements satisfaisants.

1. INTRODUCTION

There are several natural or unnatural cyclopentenyl-containing molecules with remarkable biological activity. Such derivatives can be found in alkaloids [1], chokols [2], prostaglandins [3], triquínanes [4], indans [5,6] and guianes [7]. Therefore, the development of expeditious and efficient methods for the construction of such compounds would be an active area of research. Probably, the most used strategies to prepare complex molecules that possess functionalized cyclopentyl unit were reported for Nazarov cyclization [8], Diels-Alder reaction [9] and for other reaction pathways [10-12].

Furthermore, the Michael addition plays an important role among the numerous asymmetric carbon-carbon bonds forming reactions [13-15]. This represents one of the most elegant and attractive ways to introduce chirality into some Michael acceptors such as allyl nitrile 3. Particularly interesting challenge is the asymmetric conjugate addition of a carbon nucleophile to electrophilic acceptors which constitutes a very useful synthetic procedure for the preparation of chiral cyclic compounds [16] with vicinal stereogenic centers in a single step. In this area, we report here a convenient synthesis of 1,2,3-trifunctionalized cyclopentane rings 4a-f via the conjugate addition of nitroalkanes to the prepared cyclic allyl nitrile 3 (Scheme 1).

![Scheme 1. Retrosynthetic strategy for obtaining 1,2,3-trisubstituted cyclopentanes 4a-f](image)

* Corresponding author: E-mail: hassen.amri@fst.rnu.tn
2. RESULTS AND DISCUSSION

As part of the research program related to the development of synthetic methods for the construction of cyclopentenic skeletons, we are interested in the nucleophilic substitution reaction of the allyl acetate 2 using first, the DABCO as a co-nucleophilic reagent in water through formation of a quaternary ammonium salt which transformed to the corresponding allyl nitrile 3 [17] in the presence of potassium cyanide in a 69% yield (Scheme 2).

The coupling reaction of nitroalkane anions to electron-poor alkenes is a very powerful synthetic tool for generation of a variety of important targets such as cyclopentenones [18], spiroketals [19], lactones [20,21], furans [22], pyrroles [23] and aromatic derivatives [24]. On the other hand, the Michael addition reaction has performed in the presence of a large variety of bases, both in homogeneous solutions and in heterogeneous catalysis. Weak bases such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) [25,26], 1,1,3,3-tetramethylguanidine (TMG) [27,28], triphenylphospine [29] and aqueous sodium hydroxide [30-32] are able to promote the nucleophilic addition using aliphatic nitronate anions, which can react with different electrophiles to give polyfunctionalized products [33]. In this context, we show that the Michael reaction performed on allylic systems of type 3 is very promising with the use of a variety of aliphatic nitroalkanes. Deprotonation of the latter carried out in the presence of sodium ethoxide prepared in situ at room temperature to provide 4a-f in satisfactory yields (48-70%).

It should be noted here that adducts 4a-f containing more than one stereogenic center may exist as a mixture of diastereoisomers which is difficult to separate by conventional chromatographic techniques. However, it would be possible to consider similar results we obtained recently from the Michael addition of primary amines on the same allyl nitrile 3 leading to trans-trans products 5 [17]. The duplication of signals in 13C NMR of all carbon atoms of nitro adducts 4a-f are mainly due to the presence of two trans-trans diastereoisomers relevant to the asymmetry of exocyclic center (Scheme 3, Table 1).

The Michael adducts 4a-f could be used as starting materials in the synthesis of more complex molecules. The selective reduction of the nitro group [34,35] offers the possibility to access a variety of bicyclic γ-lactams 6 [36,37] will interest biological activities. This work is currently under study (Scheme 4).
Table 1: Synthesis of 1,2,3-trifunctionalized cyclopentanes 4a-f

<table>
<thead>
<tr>
<th>Entry</th>
<th>R^1</th>
<th>R^2</th>
<th>Product 4</th>
<th>Yield* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>H</td>
<td>CH$_3$</td>
<td>![CN][CO$_2$Et][NO$_2$]</td>
<td>70</td>
</tr>
<tr>
<td>b</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>![CN][CO$_2$Et][NO$_2$]</td>
<td>65</td>
</tr>
<tr>
<td>c</td>
<td>H</td>
<td>C$_7$H$_7$</td>
<td>![CN][CO$_2$Et][NO$_2$]</td>
<td>55</td>
</tr>
<tr>
<td>d</td>
<td>H</td>
<td>C$_9$H$_9$</td>
<td>![CN][CO$_2$Et][NO$_2$]</td>
<td>50</td>
</tr>
<tr>
<td>e</td>
<td>H</td>
<td>C${11}$H${11}$</td>
<td>![CN][CO$_2$Et][NO$_2$]</td>
<td>48</td>
</tr>
<tr>
<td>f</td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>![CN][CO$_2$Et][NO$_2$]</td>
<td>60</td>
</tr>
</tbody>
</table>

* Yields refered to the pure isolated products characterized by 1H and 13C NMR

3. CONCLUSION

We developed an expedient synthesis of trifunctionalized cyclopentanes 4a-f from an efficient coupling reaction of cyclic allyl nitrile 3 and nitrolkane salts in absolute ethanol as solvent. The simplicity of this method and its mild reaction conditions seem to be an invaluable way to produce highly functionalized compounds with several stereogenic centers that can serve as useful intermediates for interesting synthetic purposes.
4. EXPERIMENTAL

All reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under dry nitrogen atmosphere with magnetic stirring. All reactions were monitored by TLC on silica gel plates (Fluka Kieselgel 60 F254). Crude products were purified using column chromatography on silica gel (Fluka Kieselgel 70-230 mesh). 1H and 13C NMR spectra were recorded on a Bruker AC 300 spectrometer at 300 and 75 MHz for 1H and 13C, respectively in CDCl$_3$ as solvent and TMS as the internal standard. The chemical shifts (δ) and coupling constants (J) are expressed in parts per million (ppm) and Hertz (Hz), respectively. All NMR spectra were acquired at room temperature. Multiplicity of peaks is indicated by: s: singlet; d: doublet; t: triplet; q: quartet; quint: quintuplet; sept: septuplet; m: multiplet.

4.1. General procedure for the synthesis of 1,2,3-trifunctionalized cyclopentanes 4a,a',f,f'

A mixture of absolute EtOH (30 mL) and Na (0.41 g, 18 mmol) was allowed to stir under nitrogen. The nitroalkane (18 mmol) and ethyl 5-cyanocyclopent-1-ene carboxylate 3 (1g, 6 mmol) were then added at room temperature and the mixture was stirred for 6 h at 25 °C. The solvent was evaporated under reduced pressure and the residue was then hydrolyzed by a saturated solution of NH$_4$Cl. After extraction with diethyl ether (5x30 mL), the combined organic layers were washed with brine, dried over anhydrous magnesium sulfate (MgSO$_4$) and the solvent was evaporated in vacuo. The crude product was purified by column chromatography (silica gel, EtOAc / hexane, 3:7) to afford the corresponding γ-nitro esters 4.

4.1.1. Ethyl 2-cyano-5-(1-nitroethyl)cyclopentanecarboxylate 4a,a'. Yield: 70% as a yellow liquid; 1H NMR (CDCl$_3$, δ ppm, J Hz): 4.24, 4.19 (2q, 4H, J = 7.00), 4.06 (qt, 1H, J = 6.00), 3.54-3.45 (m, 2H), 3.19, 3.10 (2t, 2H, J = 7.00), 2.13-2.14 (m, 2H), 2.06-2.07 (m, 2H), 1.96-1.89 (m, 4H), 1.84-1.35 (m, 4H), 1.20, 1.20 (2d, 6H, J = 7.00), 1.19, 1.09 (2t, 3H, J = 7.00); 13C NMR (CDCl$_3$, δ ppm): 171.8, 169.2 (C=O), 122.2, 121.4 (C≡N), 83.0, 80.9 (CH-NO$_2$), 64.9, 64.6 (OCH$_3$), 61.6, 61.1 (HC-Co$_2$Et), 55.2, 55.0 (CH-CH-NO$_2$), 33.4, 31.2 (CH$_2$-CH-CN), 29.9, 29.3 (CH$_2$-CH$_2$), 28.0, 27.9 (CH-CN), 15.2, 15.2 (CH$_3$-CH-NO$_2$), 14.2, 14.2 (CH$_3$).

4.1.2. Ethyl 2-cyano-5-(1-nitropropyl)cyclopentanecarboxylate 4b,b'. Yield: 65% as a yellow liquid; 1H NMR (CDCl$_3$, δ ppm, J Hz): 4.22, 4.07 (2q, 4H, J = 7.00), 3.54-3.32 (m, 2H), 3.18-3.08 (m, 2H), 2.78 (t, 1H, J = 9.00), 2.34-2.28 (m, 2H), 2.17-1.95 (m, 4H), 1.92-1.89 (m, 4H), 1.84-1.35 (m, 4H), 1.31, 1.27 (2t, 6H, J = 6.00); 1.19, 1.09 (2t, 6H, J = 9.00); 13C NMR (CDCl$_3$, δ ppm): 170.7, 169.2 (C=O), 122.3, 121.4 (C≡N), 83.0, 80.9 (CH-NO$_2$), 64.9, 64.6 (OCH$_3$), 61.4, 61.1 (HC-Co$_2$Et), 55.2, 55.0 (CH-CH-NO$_2$), 32.7, 32.6 (CH$_2$-CH-CN), 30.7, 30.5 (CH$_2$-CH$_2$), 29.9, 29.2 (CH$_2$-CH-NO$_2$), 28.0, 27.9 (CH-CN), 15.2, 15.1 (CH$_3$-CH$_2$O), 14.1, 14.0 (CH$_3$).

4.1.3. Ethyl 2-cyano-5-(1-nitrobutyl)cyclopentanecarboxylate 4c,c'. Yield: 55% as a yellow liquid; 1H NMR (CDCl$_3$, δ ppm, J Hz): 4.25, 4.18 (2q, 4H, J = 7.00), 3.41, 3.37 (2q, 2H, J = 7.00), 3.18-3.08 (m, 2H), 2.88-2.77 (m, 2H), 2.07-1.94 (m, 6H), 1.67-1.59 (m, 4H), 1.40-1.20 (m, 8H), 1.19, 1.13 (2t, 6H, J = 6.00), 0.90, 0.81 (2t, 3H, J = 7.00); 13C NMR (CDCl$_3$, δ ppm): 171.6, 170.9 (C=O), 120.4, 119.2 (C≡N), 89.6, 89.3 (CH-NO$_2$), 65.8 (OCH$_3$), 62.1, 62.0 (HC-Co$_2$Et), 46.2, 46.0 (CH$_2$-CH-NO$_2$), 43.7, 43.7 (CH-CH-NO$_2$), 31.9, 31.5 (CH$_2$-CH-CN), 29.8, 29.7 (CH$_2$-CH$_2$), 27.6, 25.6 (CH$_2$-CH$_2$-CH$_3$), 19.2, 19.1 (CH-CN), 15.2 (CH$_3$-CH$_2$O), 14.1, 13.7 (CH$_3$).

4.1.4. Ethyl 2-cyano-5-(1-nitropentyl)cyclopentanecarboxylate 4d,d'. Yield: 50% as a yellow liquid; 1H NMR (CDCl$_3$, δ ppm, J Hz): 4.28, 4.19 (2q, 4H, J = 7.00), 3.21, 3.16 (2q, 2H, J = 7.00), 3.24-3.13 (m, 2H), 2.91-2.85 (m, 2H), 2.78 (q, 1H, J = 7.00), 2.15-1.96 (m, 6H), 1.84-1.72 (m, 8H), 1.36-1.29 (m, 14H), 0.93 (2t, 6H, J = 7.00); 13C NMR (CDCl$_3$, δ ppm): 171.6, 170.6 (C=O), 120.5, 119.3 (C≡N), 90.6, 89.8 (CH-NO$_2$), 62.1, 62.0 (OCH$_3$), 50.7, 49.7 (HC-Co$_2$Et), 46.3, 46.1 (CH$_2$-CH-NO$_2$), 43.9 (CH$_2$-CH$_2$-CH$_3$), 32.7, 32.6 (CH-CH-NO$_2$), 31.8, 31.6 (CH$_2$-CH-CN), 30.1, 29.9 (CH$_2$-CH$_2$), 28.0, 27.9 (CH$_2$-CH$_2$-CH$_3$), 22.0 (CH-CN), 14.1, 14.1 (CH$_3$-CH$_2$O), 13.9, 13.7 (CH$_3$).

4.1.5. Ethyl 2-cyano-5-(1-nitrohexyl)cyclopentanecarboxylate 4e,e'. Yield: 48% as a yellow liquid; 1H NMR (CDCl$_3$, δ ppm, J Hz): 4.25, 4.20 (2q, 4H, J = 7.00), 3.24, 3.17 (2q, 2H, J = 7.00), 3.25-3.13 (m, 2H),
2.92-2.82 (m, 2H), 2.78, 2.75 (2t, 2H, J = 6.00), 2.15-1.94 (m, 6H), 1.83-1.71 (m, 4H), 1.38-1.26 (m, 22H), 0.90, 0.89 (2t, 6H, J = 6.00); 13C NMR (CDCl$_3$, δ ppm): 171.7, 170.6 (C=O), 120.5, 119.3 (C≡N), 90.6, 89.8 (CH-NO$_2$), 62.1, 62.0 (OCH$_3$), 50.8, 49.0 (HC-CO$_2$Et), 46.3, 46.1 (H$_2$C-CH$_2$-CH$_3$), 44.0 (CH$_2$-CH-NO$_2$), 32.7, 32.6 (CH-CH-NO$_2$), 31.9, 31.8 (O$_2$N-CH-CH$_2$-CH$_3$), 31.6, 31.4 (CH$_2$-CH$_2$-CN), 29.9, 29.3 (CH$_2$-CH$_2$), 28.9, 27.8 (CH$_3$-CH-CH$_3$), 22.0, 21.9 (CH-CH$_2$), 14.1, 14.1 (CH$_3$-OCH$_3$), 13.9, 13.8 (CH$_2$-CH$_3$).

4.1.6. Ethyl 2-cyano-5-(2-nitropropan-2-yl)cyclopentanecarboxylate 4f. Yield: 60% as a yellow liquid; 1H NMR (CDCl$_3$, δ ppm, 7 Hz): 4.24, 4.19 (2q, 4H, J = 6.00), 3.58-3.01 (m, 2H), 2.79 (t, 2H, J = 9.00), 2.21-2.11 (m, 2H), 1.99-1.91 (m, 4H), 1.83-1.75 (m, 4H), 1.74 (s, 6H), 1.20, 1.10 (2t, 6H, J = 6.00); 13C NMR (CDCl$_3$, δ ppm): 171.9, 169.2 (C=O), 122.3, 121.4 (C≡N), 83.0, 80.9 (CH-NO$_2$), 65.0, 64.6 (OCH$_3$), 61.7, 61.6 (HC-C-NO$_2$), 55.2, 55.0 (HC-CO$_2$Et), 36.6 (CH$_2$-CH-CN), 30.7, 29.2 (C(CH$_3$)$_2$), 28.0, 27.9 (CH$_2$-CH-NO$_2$), 23.1, 22.2 (CH-CH$_2$), 15.1, 14.2 (CH$_3$).

REFERENCES
[27] Polli, G. P.; Barco, A.; De Giulio, G. Synthesis 1972, 44.
[34] Bechamp. A. Ann. 1854, 92, 402.