Optimization of magnesium oxychloride cement formation using experimental design methodology

Amal Brichni a,b, Halim Hammi a, Salima Aggoun c, Adel Mnif a

Abstract: In this work, the experimental design methodology is applied to optimize the condition of formation of Magnesium chloride cement. A four factors factorial design to model and to optimize the operating parameters that govern the formation was used. The studied factors were mass ratio of MgCl₂.6H₂O/MgO, mixing time and stirring speed. Considered responses are compressive strength and setting time. The optimum operating conditions were quite efficient to have a good compressive strength and suitable setting time. The phases compositions of magnesium oxychloride cement were evaluated by X-ray diffraction, the morphological properties were examined by SEM and their thermal behaviour was analyzed by DTA/TGA. The presence of phase 5 confirms the good compressive strength of magnesium oxychloride cement.

Keywords: Magnesium oxychloride cement, Experimental design methodology, Optimization.

INTRODUCTION

Magnesium chloride cement (MOC) has superiors properties as compared to ordinary Portland cement such as high compressive strength [1], good resistance to abrasion, rapid hardening rate, good cohesiveness, high fire resistance [2] and it can be use with all kinds of aggregates [3]. The main used applications are architectural such as construction of industrial floors, construction of thermal and acoustical insulating panels [4] and other prefabricated building boards [5]. The basic chemical reaction system of MOC system is MgO–MgCl₂–H₂O [6-7]. The main bonding phases found in hardened MOC are 5Mg(OH)₂·MgCl₂·8H₂O (phase5) and 3Mg(OH)₂·MgCl₂·8H₂O (phase 3) which are obtained by the following chemical reactions[7]:

\[
\begin{align*}
5\text{MgO} + \text{MgCl}_2 + 13 \text{H}_2\text{O} &= 5\text{Mg(OH)}_2 \cdot \text{MgCl}_2 + 8 \text{H}_2\text{O} \\
3\text{MgO} + \text{MgCl}_2 + 11 \text{H}_2\text{O} &= 3\text{Mg(OH)}_2 \cdot \text{MgCl}_2 + 8 \text{H}_2\text{O}
\end{align*}
\]

(1) (2)

They are the only stable phases in the system MgO-MgCl₂-H₂O. Due to the presence of excess water a parallel or competitive reaction, corresponding to the magnesium oxide hydration can take place:

\[
\text{MgO} + \text{H}_2\text{O} = \text{Mg(OH)}_2
\]

(3)

The presence of Mg(OH)₂ indicates the low quality of the magnesium oxychloride cement.

Furthermore, the widespread use of magnesium oxychloride cement has been limited because of loss of strength on prolonged excessive exposure to water [8]. Much research has long been processed to improve the water-resistance of magnesium oxychloride based on his ability to the binding of various organic and inorganic aggregates such as high active SiO₂ [9-10], active aluminates [1] sulfates and phosphoric acid or phosphate [12].

In this work, the influence of three factors (mass ratio of MgCl₂/MgO, mixing time and
stirring speed) on compressive strength and setting time of MOC was carried out. The application of the experimental design methodology was used in order to maximize synthesis yield by searching for the optimum experimental conditions in a less number of experiments.

MATERIAL AND EXPERIMENTAL PROCEDURE

1. Materials

The raw materials used in the study were magnesium oxide and magnesium chloride hexahydrate. The magnesium oxide was produced by HIMEDIA (Laboratories in India) and magnesium chloride hexahydrate was produced by Scharlab in Spain. The chemical compositions of the raw materials are listed in table I.

2. Preparation of magnesium chloride solution:

Saturated Magnesium chloride solution was prepared by dissolving the magnesium chloride hexahydrate into distilled water before mixing with magnesium oxide powder to produce MOC cement paste. The mass concentration of the solution is 217 g for 100 g of water.

3. Preparation of specimens

Magnesium oxide powder was mixed with magnesium chloride solution mechanically using a mixer (Heidolph RZR) to form homogenous MOC pastes. The weight of MgO is fixed and the weight of MgCl₂·6H₂O has been varied.

Mixtures were cast in cylindrical molds (26 mm in diameter, 50 mm high) and stored for 24 h, then unmolded and air-cured for 28 days.

4. Measurements

The XRD analyzed was carried out on the powdered sample using X-Ray powder diffractometer (XRD PHILIPS) with Cu K radiation (λ K=1.54Å).

Differential thermograms were obtained using the Netzsch 449 STA F1 Jupiter thermal analyis system. The rate of heating was 15°C / min.

The microstructure of the samples was examined using scanning electron microscope Carl ZEISS LEICA S430i model.

Measurement of thermal conductivity was performed in dry state using Photothermal Deflection Technique. Setting time was determined by using Vicat Apparatus.

Porosity accessible to water of MOC is determined according to EN 12390-7 norm. The measurement of porosity in the water under a vacuum of 0.1 bar, quantify the volume of open pores (accessible to water) using the following protocol:

- Cement samples are placed in sealed desiccators and kept under Vacuum of 0.1 bar for 12 h.
- Previously degassed water is introduced progressively in desiccators to fill all the pores of samples, without introducing air bubbles.
- Once the samples are saturated, they kept immersed in water for 24 hours, and finally we determined hydrostatic mass \(m_{\text{sss}} \) and saturated dry surface mass \(m_{\text{imm}} \).

The porosity is calculated by the following equation (4):

\[
\text{Porosity} = \frac{m_{\text{dry}} - m_{\text{imm}}}{m_{\text{imm}} - m_{\text{sss}}}
\]

With:

- \(m_{\text{sss}} \): saturated dry surface mass of sample
- \(m_{\text{dry}} \): mass of sample before saturation
- \(m_{\text{imm}} \): mass of sample measured in water
RESULTS AND DISCUSSION
1. Studied factors and experimental domains
According to the preparation of MOC, 3 quantitative factors are chosen: mass ratio of MgCl₂/MgO, stirring speed and mixing time. The corresponding variables and their levels (set according to the data of preliminary experiments and the equipment abilities) are given in Table II.

<table>
<thead>
<tr>
<th>Levels</th>
<th>Mass ratio of MgCl₂/MgO</th>
<th>Speed time (rpm)</th>
<th>Mixing time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1.42</td>
<td>650</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1.82</td>
<td>1125</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2.22</td>
<td>1600</td>
<td>15</td>
</tr>
</tbody>
</table>

We should mention that we fixed H₂O/MgO mass ratio for each level.

To test the direct influence of the three studied factors as well as their possible interaction effects on the measured experimental responses, we have realized a two-level complete factorial design 2³ which is expected to provide excellent information concerning not only the main effects but also the double interaction effects.

The experimental design and the measured responses are summarized in Table IV.

Comparing MOC and Portland cement (setting time between 2h and 3h), it is found that MOC has a faster setting. It also has better mechanical strength.

For a very short setting time (6 min), MOC have a high strength (75.48 MPa): in this case the cement is recommended for applications which require a longer setting time (floor covering ...).

Considering that the interaction effects between three or more factors are negligible, the factor effect estimation is computed [13] according to [14]:

\[b_i = \frac{\sum_j N_j \pm Y_j}{N} \]

Where \(b_i \) is the effect estimation of the factor \(i \), \(Y_j \) is the response \(j \) and \(N \) is the number of experiences.

The pooled variance estimation used to determine the significant factors is computed as

\[S_a^2 = \frac{\sum_i v_i S_i^2}{n} \]

Where \(S_a^2 \) is the pooled experimental variance, \(S_i^2 \) is the experimental variance estimation i, \(v_i \) is the degree of freedom i and \(n = \sum v_i \) is the degree of freedom of the pooled experimental variance.

2. Identification of the influential factors
Based on check student for an error risk \(\alpha=5\% \), it was found that \(t_{\text{tabulated}} = 4.303 \). Table V summarizes the factors effects estimation for the two responses: compressive strength \((Y_1) \) and setting time \((Y_2) \).

Table II: Experimental factors and levels investigated

<table>
<thead>
<tr>
<th>Levels</th>
<th>Mass ratio of MgCl₂/MgO</th>
<th>Speed time (rpm)</th>
<th>Mixing time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1.42</td>
<td>650</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1.82</td>
<td>1125</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>2.22</td>
<td>1600</td>
<td>15</td>
</tr>
</tbody>
</table>

Table III: The mass ratio of H₂O/MgO

<table>
<thead>
<tr>
<th>Levels</th>
<th>H₂O/MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0.74</td>
</tr>
<tr>
<td>0</td>
<td>0.96</td>
</tr>
<tr>
<td>1</td>
<td>1.17</td>
</tr>
</tbody>
</table>
Table IV: Factorial matrix 2^3.

<table>
<thead>
<tr>
<th>No. Exp.</th>
<th>Mass ratio of MgCl$_2$/MgO</th>
<th>Mixing time (min)</th>
<th>Stirring speed (rpm)</th>
<th>Compressive strength (MPa)</th>
<th>Setting time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.42</td>
<td>5</td>
<td>650</td>
<td>49.47</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2.22</td>
<td>5</td>
<td>650</td>
<td>46.59</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1.42</td>
<td>15</td>
<td>650</td>
<td>4.55</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>2.22</td>
<td>15</td>
<td>650</td>
<td>21.20</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>1.42</td>
<td>5</td>
<td>1600</td>
<td>41.38</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>2.22</td>
<td>5</td>
<td>1600</td>
<td>76.40</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>1.42</td>
<td>15</td>
<td>1600</td>
<td>75.48</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>2.22</td>
<td>15</td>
<td>1600</td>
<td>20.50</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>1.82</td>
<td>10</td>
<td>1125</td>
<td>67.00</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>1.82</td>
<td>10</td>
<td>1125</td>
<td>60.54</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>1.82</td>
<td>10</td>
<td>1125</td>
<td>59.00</td>
<td>28</td>
</tr>
</tbody>
</table>

Table V: Factors signification for the two responses Y_1 and Y_2

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Y_1</th>
<th>Y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
<td>SD</td>
</tr>
<tr>
<td>b_0</td>
<td>47.464</td>
<td>1.279</td>
</tr>
<tr>
<td>b_1</td>
<td>-0.773</td>
<td>1.500</td>
</tr>
<tr>
<td>b_2</td>
<td>-11.513</td>
<td>1.500</td>
</tr>
<tr>
<td>b_3</td>
<td>11.493</td>
<td>1.500</td>
</tr>
<tr>
<td>b_{12}</td>
<td>-8.808</td>
<td>1.500</td>
</tr>
<tr>
<td>b_{13}</td>
<td>-4.216</td>
<td>1.500</td>
</tr>
<tr>
<td>b_{23}</td>
<td>6.063</td>
<td>1.500</td>
</tr>
<tr>
<td>b_{123}</td>
<td>-13.691</td>
<td>1.500</td>
</tr>
</tbody>
</table>
The two models are represented by the equations given below:

Compressive strength:
\[Y_{\text{cal}1} = 47.464 - 11.513X_2 + 11.493X_3 - 8.808X_1X_2 - 13.6913X_1X_2X_3 \] (7)

Setting time:
\[Y_{\text{cal}2} = 29.090 + 14.625X_1 - 5.875X_2 - 5.625X_3 - 3.125X_1X_2 + 2.875X_1X_2X_3 \] (8)

3. Analysis of Residue

Figure 1 reveals the distribution of the calculated versus experimental values for the two responses \(Y_1 \) and \(Y_2 \). The points are almost randomly distributed about the line representing exact agreement, providing good agreements between experimental values and those calculated using the model.

4. Analysis of Variance

Table VI summarizes the variance analysis of the chosen responses \(Y_1 \) and \(Y_2 \).

The main results for \(Y_1 \) and \(Y_2 \) are, respectively, 333.601 and 12.539, as lack of fit mean square and 18.017 and 2.333 as estimation of experimental variance. Thus, the values of the ratio between the lack of fit mean square and the estimation of experimental variance 18.5168 and 5.3739 for the responses \(Y_1 \) and \(Y_2 \) are inferior to the tabled \(F_{4.2}^{0.05} \) and \(F_{3.2}^{0.05} \), respectively. Consequently, it is possible to confirm the validity of the two elaborated models. In addition, the ratios between the regression mean square and the residual mean square for the three responses \(Y_1 \) and \(Y_2 \) (4.638 and 5.3739) are superior to the tabled \(F_{4.6}^{0.05} \) and \(F_{5.5}^{0.05} \) respectively. Thus, the significant variables, applied to elaborate the three models, have a large significance on their responses.

5. Optimization

For selecting the optimal conditions we try to make a compromise between the two responses to have a good compressive strength and a suitable setting time.

By merely regarding values and signs of these significant effects, we conclude that maximization of the two responses is reached for experience number 6 (compressive strength = 76.40 MPa and setting time = 41 min):
- Mass ratio of MgCl\(_2\)-6H\(_2\)O/MgO (\(X_1 \)): 2.22
- Mixing time (\(X_2 \)): 5 min
- Stirring speed (\(X_3 \)): 1125 rpm

The phase diagram of the ternary MOC system (MgO-MgCl\(_2\)-H\(_2\)O) [5] at ambient temperature is...
Table VI: Analysis of variance.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>Ratio</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>4237.738</td>
<td>4</td>
<td>1059.4345</td>
<td>4.63837</td>
<td>0.048</td>
</tr>
<tr>
<td>Residual</td>
<td>1370.437</td>
<td>6</td>
<td>228.40616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>1334.403</td>
<td>4</td>
<td>333.601</td>
<td>18.51568</td>
<td>0.051897</td>
</tr>
<tr>
<td>Pure error</td>
<td>36,034</td>
<td>2</td>
<td>18.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5608.174</td>
<td>10</td>
<td>1059.4345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>2384.625</td>
<td>5</td>
<td>476.925</td>
<td>56.40478</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>42.277</td>
<td>5</td>
<td>8.4554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>37.610</td>
<td>3</td>
<td>12.539</td>
<td>5.3739</td>
<td>0.160892</td>
</tr>
<tr>
<td>Pure error</td>
<td>4.667</td>
<td>2</td>
<td>2.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2426.909</td>
<td>10</td>
<td>476.925</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

illustrated in Figure 2 with the composition point of the optimum which is located near to the phase 5 responsible for the good compressive strength of the cement.

5. Characterization

Figure 3 shows the XRD pattern of MOC with optimal condition. It can be found that phase 5 is present. This phase is the major product responsible for hardening and the strength of MOC. We measured porosity accessible to water, we founded that the total porosity of MOC is 4% which is in a good accordance with other results in literature [15].

The thermal conductivity of cement is 0.8 W/mK. The morphology of MOC is shown in Figure 4. We can see a rough surface with a dense network of needle-like crystals of 500 nm which has a high strength (Phase 5). Thermal analysis of MOC is shown in Figure 5. Six endothermic events appear on the DTA curves of MOC during heating. Thermal decomposition requires a dehydration stage of crystalline phase 5 Mg(OH)₂·MgCl₂·8H₂O at 179°C to obtain an anhydrous materials. The other deflections in this curve at 358°C, 414°C, 484°C and 711°C present the decomposition stage.
of 5 Mg(OH)$_2$MgCl$_2$ and the loss of MgCl$_2$. The last deflection at 1100°C represents the decomposition to obtain the final solid product MgO.

CONCLUSION

The formation of MOC was carried out in this study using experimental design. The results showed that there is an agreement between the experimental values and those calculated from the model developed which confirms its validity. The optimal conditions are MgCl$_2$.6H$_2$O/MgO (X$_1$): 2.22, Mixing time (X$_2$): 5 min and Stirring speed (X$_3$): 1125 rpm. The responses are: compressive strength = 76.40 MPa and setting time = 41 min. The interpretation of results found by DRX, IR, SEM and TG-DTA confirms the presence of phase 5 which is responsible for the good compressive strength of magnesium oxychloride cement.

ACKNOWLEDGEMENTS: This work was supported by a grant from Ministry of Higher Scientific Research of Tunisia. The authors would like to thank the technical team of the National Research Centre of Materials Sciences in Borj Cedria Technological Park and of L2MGC in University of Cergy-Pontoise.

REFERENCES