CARBONYLATION DE L'ACÉTATE DE METHYLE EN ANHYDRIDE ACÉTIQUE SUR DES CATALYSEURS AU RHODIUM ET L'IRIDIUM ÉCHANGES DANS LES ZÉOLITHES NaY

B. ELLEUCH*, Y. BEN TAARIT** et P. GELIN**
* Ecole nationale d'Ingénieurs. B.P. W - 3038 Sfax - TUNISIE
** Institut de Recherche sur la catalyse, 69626 Villeurbanne FRANCE

RESUME

La réduction du Rh (III) et de Ir(III) par le monoxyde de carbone à température modérée conduit à la formation de complexes dicarbonyles définis du rhodium (I) ou de l'iridium (I). Ces complexes réagissent avec des halogénures de méthyle suivant une addition oxydante formant une liaison M-R dans laquelle le monoxyde de carbone peut s'insérer en formant un ligand acétylè. Le complexe peut évoluer vers une élimination réductrice de l'halogénure d'acétylène en présence d'acétate de méthyle pour former finalement l'anhydride acétique. Cette succession d'étapes concrétisant la carbonylation de l'acétate de méthyle en anhydride acétique a été analysée. Les différences de comportement observées entre le rhodium et l'iridium ont été expliquées. L'étape lente a été identifiée à la réaction.

ABSTRACT

The reduction of (Rh(III) and Ir(III)) by means of carbon monoxide at a moderate temperature leads to the formation of complexes of definite dicarbonyles of rhodium or iridium. The oxidation of halogeno methane by these complexes leads to an M-R bond which reacts with carbon monoxide to produce an acyl bond. The complexe transforms through a reducing elimination of the acetyl halogène in the presence of methyl acetate, to form acetic anhydride.

INTRODUCTION

Dans les articles précédents, nous avons décrit la préparation et les propriétés physicochimiques des catalyseurs au rhodium et à l'iridium déposés sur zéolithe (1-3).

Nous montrons ici que les catalyseurs au rhodium et à l'iridium sont actifs à pression atmosphérique dans la réaction de carbonylation de l'acétate de méthyle en anhydride acétique. Cependant le catalyseur au rhodium se désactive rapidement.

Nous expliquons ici les différences d'activité observées entre les deux catalyseurs. Enfin une étude cinétique menée sur le catalyseur iridé nous permet de déterminer l'étape lente du processus catalytique.
MODE OPERATOIRE

a) Dispositif expérimental : le dispositif expérimental utilisé comprend quatre parties :
 * un système d'admission des réactifs muni de manomètres, de saturateurs et cryostat permettant de faire varier à volonté les pressions partielles de chacun des réactifs et également le débit du mélange réactionnel à travers le lit catalytique ;
 * un système parallèle de traitement in-situ du catalyseur ;
 * un réacteur muni d'un système de chauffage et de régulation ;
 * un dispositif d'analyse constitué par un chromatographe Intersmat à ionisation de flamme et à montée linéaire de température.

b) Le catalyseur, environ 200 à 400 mg de zéolithe échangée par des cations complexes (Rh(NH₃)₅Cl)²⁺ ou (Ir(NH₃)₅Cl)²⁺ à des teneurs de 0,5 à 2,5 % en poids, est activé sous courant d'oxygène en montée lente de température (0,5°/mn jusqu'à un palier de 623 K pour le rhodium (4) et de 523 K pour l'iridium (5). La température est maintenue à ce palier pendant une nuit. Le réacteur est ensuite refroidi à la température de réaction et le dispositif est balayé par de l'hélium. Le mélange réactionnel préalablement constitué est alors envoyé sur le catalyseur. L'évolution de la vitesse de formation de chacun des produits est enregistrée en fonction du temps, ou de la pression partielle d'un réactif.

RESULTATS ET DISCUSSION

Etude cinétique

* Cas du Rh/NaY

Après avoir vérifié que le catalyseur au rhodium est actif à pression atmosphérique dans la réaction de carbonylation de l'acétate de méthyle, nous avons procédé à une étude de l'évolution de l'activité catalytique au cours du temps.

Le mélange réactionnel est constitué comme suit :

\[P_{\text{Me}} = 5,4 \text{ torr} \]
\[P_{\text{CO}} = 320 \text{ torr} \]
\[P_{\text{AcOMe}} = 51,4 \text{ torr} \]
\[P_{\text{He}} = \text{ complément à la pression atmosphérique} \]

28
Ce mélange est envoisé sur le catalyseur préalablement activé sous oxygène et sous CO et maintenu à une température voisine de 373 K. On élève ensuite la température à la valeur désirée (500 K).

Invariablement, l'acide acétique apparaît en premier. Sa pression partielle dans les effluents croît pour atteindre un maximum au bout d'une heure de réaction environ. Ce maximum d'activité correspond à une vitesse de 50.10^{-3} mol·h^{-1}·g^{-1} par gramme de rhodium. Parallèlement, l'anhydride apparaît quelques minutes après l'acide et sa teneur dans les effluents suit une variation parallèle à celle de l'acide avec un maximum de vitesse enregistré au bout de deux heures de réaction environ. Cependant, la vitesse de formation de l'anhydride est toujours inférieure à celle de la production de l'acide. Le catalyseur poursuit sa désactivation pendant six heures environ au bout des quelles il devient pratiquement inactif. La figure 1 montre l'évolution en fonction du temps de l'activité du catalyseur aussi bien pour la production d'acide que d'anhydride. Ce phénomène de désactivation n'a pas été observé dans le cas de la carboxylation du méthanol. Pour pouvoir y remédier, nous avons commencé à déterminer les causes et les facteurs responsables de cette désactivation.

Figure 1 : Variation des vitesses de formation de CO_2 et COOH sur RhNaY (1% Rh)
au cours du temps. T = 227°C

A priori, plusieurs phénomènes peuvent être à l'origine de cette désactivation. En effet, elle peut provenir :
 * d'une destruction du réseau de la zéolithe,
 * d'une éluion du métal ou d'une transformation de l'espèce active sous forme de carbonylate ou de composé inactif,
 * d'une combinaison de ces facteurs.
Étude du mécanisme de désactivation

Les spectres infrarouges enregistrés dans KBr de l’échantillon frais et usagé ont montré que la cristallinité de la zéolithé a été conservée. Ce même résultat a été confirmé par RX. En effet, l’analyse par diffraction des RX d’un échantillon usagé a permis de prouver que la structure de la zéolithé a été préservée et que la maille est restée constante. Cependant l’analyse quantitative a révélé la présence de particules insolubles formées au cours de la réaction et qui contenaien du rhodium.

D’une part l’analyse par RX de ces particules insolubles obtenues au cours de la mise en solution a permis de les identifier à des particules métalliques de Rhodium, d’autre part l’analyse par microscopie électronique de l’échantillon usagé a montré que de grosses particules de rhodium métalliques sont déposées à la surface du catalyseur. Ces particules métalliques ont une taille supérieure à 100 Å.

Il est donc vraisemblable que la transformation du Rh en particules métalliques apparemment inactives justifie au moins en partie la perte d’activité.

* Cas de l’Ir/NaY

Dans une étude préliminaire, nous avons vérifié que les zéolithes iridiées sont actives à partir de 443 K dans la carbonylation de l’acétate de méthyle à pression atmosphérique en présence d’iodure de méthyle. Nous avons noté que la supression de l’alimentation du mélange réactionnel en iodure de méthyle provoque l’arrêt immédiat de la réaction catalytique. Par conséquent, nous étudierons la réaction catalytique en présence de promoteur iodée CH₃I. Nous avons également constaté, pour les échantillons fortement échangés, un phénomène de désactivation du catalyseur au cours du temps de réaction. L’étude cinétique a donc été réalisé avec la zéolithé contenant 1,7 % en poids d’iridium pour laquelle un état stationnaire est atteint.

Nous avons fixé pour le test préliminaire les conditions opératoires suivantes :

\[
\begin{align*}
P_{\text{AcO}Me} &= 50 \text{ torr} \\
P_{\text{CH}_3\text{I}} &= 5 \text{ torr} \\
P_{\text{H}_2} &= 320 \\
\text{Masse catalyseur} &= 0,100 \text{ g (1,7 %)} \\
\text{Température de réaction} &= 480 \text{ K}
\end{align*}
\]
Pour ce catalyseur et en début de réaction, il y a apparition de l'acide acétique en premier comme dans le cas du catalyseur rhodié mais avec une vitesse 20 fois plus petite. Cette vitesse de formation de l'acide diminue rapidement pour se stabiliser à une valeur dépendant de la pression en AcOMe. L'anhydride quand à lui apparaît par la suite. Sa vitesse de formation augmente et passe par un maximum après environ 4 à 5 heures de réaction. Ce maximum est quatre fois plus important que celui obtenu dans le cas du rhodium.

Une fois ce maximum atteint la vitesse diminue lentement et se stabilise enfin. Ce palier où la vitesse conserve les 2/3 de sa valeur maximale dure au delà de 48 heures (fig. 2). Contrairement à ce qui a été observé dans le cas du rhodium, l'iridium présente une stabilité suffisante pour nous permettre de réaliser une étude cinétique.

![Figure 2 : Variation des vitesses de formation de Ac2O et AcOH sur IrNaY au cours du temps. T = 207°C](image)

Pour cela, nous avons étudié l'influence de la pression partielle de CH3I, de CO et de AcOMe sur la vitesse de formation d'acide et d'anhydride acétique.

Influence de la pression partielle de CH3I sur la vitesse de formation des produits

L'influence de la pression partielle de l'iode de méthyle sur la vitesse de formation de l'acide et de l'anhydride est représentée dans la figure 3a. Le domaine de pression étudié est compris entre $6,6 \times 10^2 \text{ Pa}(5 \text{ torr})$ et $19,9 \times 10^2 \text{ Pa}(15 \text{ torr})$.

31
La pression partielle de l'acétate de méthyle est fixé à 6.6×10^2 Pa (50 torr) tandis que les autres paramètres ont été maintenus comme suit :

- P_{CO} : 320 torr
- Masse du catalyseur : 0,100 g
- Température de la réaction : 480 K

Il apparaît alors que la vitesse de formation des produits de la réaction est indépendante de la pression partielle de l'iodyde de méthyle et par conséquent est d'ordre nul en iodyde de méthyle.

Influence de la pression partielle de l'acétate de méthyle

L'étude de l'influence de la pression partielle de l'acétate de méthyle sur la vitesse de formation de l'acide et de l'anhydride a été aussi menée à bien. La figure 3b montre l'évolution des vitesses de la réaction en fonction de la pression partielle de ce dernier variant entre $9,82 \times 10^2$ Pa (7 torr) et $53,06 \times 10^2$ Pa (15 torr).

La pression partielle de CH_3I étant de 13 torr alors que les autres paramètres demeurent les mêmes que précédemment.

La vitesse de formation des produits sont proportionnelles à la pression partielle de l'acétate par conséquent la vitesse de formation de l'anhydride est d'ordre un en acétate de méthyle.

Influence de la pression partielle de CO

Nous avons trouvé que la vitesse de formation d'anhydride ne varie pas avec la pression partielle du monoxyde de carbone pour le domaine de pression étudié $1,3 \times 10^4$ Pa (100 torr) et $3,97 \times 10^4$ Pa (300) (Fig.3c)

![Diagram](image-url)
Il apparaît alors que la vitesse de formation des produits de la réaction est indépendante de la pression partielle du monoxyde de carbone. Elle est par conséquent d'ordre nul en monoxyde de carbone.

L'ensemble de ces résultats cinétiques permet de proposer l'expression de la vitesse de la réaction :

\[V = K \left(\text{CH}_3\text{I} \right)^0 \left(\text{CO} \right)^0 \left(\text{AcOMe} \right)^1 \]

La vitesse de la réaction dépend seulement de la pression partielle de AcOMe. Par conséquent, la réaction d'addition de l'acétate de méthyle constitue l'étape lente du processus catalytique.

GAUTHIER-LAFAYE et coll. (6) sont arrivés à la même conclusion lorsqu'ils ont étudié la carbonylation de l'acétate de méthyle sur des catalyseurs au rhodium en phase homogène en absence de promoteur métallique.

ETUDE MÉCANISTIQUE

- Cas de Rh/NaY

L'action du monoxyde de carbone à 373 K sur une zéolithé échangée au rhodium et prétraitée sous courant d'oxygène à 573 K provoque la réduction du rhodium (III) en rhodium (I) et la formation d'espèces (RhI(CO)₂) caractérisées par les fréquences νCO à 2115 - 2100 et 2048 - 2023 cm⁻¹ (Fig. 4a) (7).

Le spectre résultant de l'action à 298 K de l'iodyure de méthyle sur Rh(I)(CO)₂ est représenté dans la figure 4b. Il montre que l'action de l'iodyure de méthyle sur les espèces Rh(I)(CO)₂ provoque la disparition des
doublets à 2115 - 2100 et 2048 et 2023 cm⁻¹ et l'apparition de nouvelles bandes à 2090 cm⁻¹ et 1728 cm⁻¹. L'apparition de la bande à 1728 cm⁻¹ a été attribuée à la vibration νCO d'un groupement acétylé dans la sphère de coordination du rhodium alors que la bande à 2090 cm⁻¹ serait due à un carbonyle linéaire du complexe rhodié (8).

Figure 4 : Spectre infrarouge
(a) de Rh(I)(CO)₂²⁺/NaY
(b) action de CH₃I sur Rh(I)(CO)₂²⁺/NaY à 25°C

Ces résultats supposent une addition oxydante de CH₃I sur Rh(I)(CO)₂ qui conduirait à la formation de l'espèce alkyle Rh(III)(I)(CO)₂CH₃. Par la suite, l'espèce acétylée se forme par insertion spontanée d'un groupe carbonylé dans la liaison RhCH₃ suivant le schéma ci-après. L'anhydride acétique est alors obtenu par action de l'acétate de méthyle sur l'iodyde d'acétylé tout en régénérant l'iodyde de méthyle.

GARBOWSKI et PRIMET sont parvenus aux mêmes conclusions concernant l'action de CO et CH₃I sur les ions Rh(III) dispersés dans les zéolithes de type X et Y (9). De même GELIN a confirmé ce résultat lors de
l'étude de la carbonylation du méthanol en acide acétique en présence de CH₃I sur les catalyseurs au rhodium échangés dans les zéolithes (10).

- Cas de Ir/NaY

De la même manière, nous avons étudié l'action du monoxyde de carbone sur le catalyseur Ir(III)NaY.

Nous avons constaté que la réduction de l'Ir par le monoxyde de carbone ne s'effectue qu'à partir de 443 K en formant l'espèce Ir(I)(CO)₂ caractérisée par les fréquences νCO à 2086 cm⁻¹ - 2001 cm⁻¹ (10) comme le montre la figure (5a).

L'addition de l'iodeur de méthyle à 298 K sur l'espèce Ir(I)(CO)₂ provoque la disparition des bandes νCO à 2081 et 2100 cm⁻¹ tandis qu'apparaissent de nouvelles bandes à 2152 et 2100 cm⁻¹ (5b). À 442 K une seule bande νCO à 2075 cm⁻¹ apparaît (5c).

Figure 5: Action de CH₃I sur Ir(I)(CO)₂
(a) Ir(I)(CO)₂ ; (b) action CH₃I sur Ir(I)(CO)₂ à 25°C
(c) CH₃I sur Ir(I)(CO)₂ à 170°C

Le déplacement important vers les hautes fréquences des bandes νCO des carbonyles liés à l'iridium provoqué par l'iodeur de méthyle traduit une forte diminution de la densité électronique autour de l'iridium. Les bandes à 2152 et 2100 cm⁻¹ peuvent être attribuées à la formation d'espèces méthyle-iridium (III) carbonyle suite à l'addition oxydante de l'iodeur de méthyle sur Ir(I)(CO)₂. L'absence de la bande dans le domaine 1650 - 1750 cm⁻¹ indique que le complexe acétyle iridium (III) carbonyle n'a pas été formé. Le complexe méthyle-iridium (III) carbonyle ne se réarrange donc
pas spontanément. L'apparition d'une bande unique à 2070 cm⁻¹ indique que le complexe alkyle a été partiellement décarbonylé, résultant soit en une espèce monocarboxyliée soit en une espèce dicarboxyliée symétrique.

En conclusion, l'addition oxydante de l'iodyure de méthyle à Ir(I)(CO)₂ conduit à la formation de l'espèce méthyle-iridium (III) carbone qui ne se réarrange pas en complexe acétylène.

L'ensemble de ces résultats sont illustrés sur le schéma réactionnel ci-dessous.

\[
\begin{align*}
\text{CH}_3\text{COI} & \quad \text{Ir(I)(CO)}_2 \\
\text{CO} & \quad \text{I} \quad \text{Ir III} \quad \text{CO} \\
\text{CH}_3 &
\end{align*}
\]

A ce stade, des différences apparaissent entre le rhodium et l'iridium : le premier donne lieu à un réarrangement spontané de ses ligands pour former un ligand acétylène. Au contraire, le produit d'addition de Ir(I)(CO)₂ et de CH₃I est stable à température ambiante et ne donne lieu à un réarrangement qu'à des températures de l'ordre de 180°C en présence d'excès de monoxyde de carbone.

L'étape suivante serait une élimination réductrice pour former AcI qui réagit avec AcOMe. Cette élimination réductrice peut être spontanée ou activée. De ce fait l'halolyse :

\[
\text{AcI} + \text{AcOMe} \quad \overset{-}{\longrightarrow} \quad \text{MeI} + \text{Ac}_2\text{O}
\]

peut être plus lente ou plus rapide que l'élimination spontanée ou activée de AcI.

Ainsi la carboxylation de l'acétate de méthyle peut être envisagé en deux étapes :

- "carboxylation" formation de AcI
"halolyse" condensation de AcI sur AcOMe

L'accumulation de AcI peut se produire dans le cas d'une réaction de carboxylation rapide par rapport à l'étape d'halolyse. En effet, comme nous venons de voir, la formation de AcI dans le cas du catalyseur au rhodium est spontanée. Aussi nous avons constaté lors de l'étude cinétique réalisée dans le cas de l'iridium que la réaction d'halolyse constitue l'étape déterminante du processus catalytique. On peut alors penser que dans le cas du catalyseur au rhodium il y aurait eu accumulation de l'espèce AcI chose qui n'a pas pu se produire dans le cas du catalyseur irhidié. Ainsi des différences entre le rhodium et l'iridium apparaissent.

L'étude de l'interactions du chlorure d'acétylène (CH₃C≡O) (à défaut d'iodures) a montré que ce dernier réagit vivement avec la surface du catalyseur pour donner plusieurs composés en particulier le cétène qui est obtenu même à température ambiante suivant:

\[
\text{CH}_3\text{COCl} \xleftrightarrow{} \text{CH}_2 = \text{C} = \text{O} + \text{HCl}
\]

Ce dernier peut provoquer :
- par son caractère réducteur, la réduction du rhodium en grosse particule métallique empêchant ainsi le cycle redox de se poursuivre ;
- par des condensations et décarboxylations, un dépôt, sur la surface, d'une couche hydrocarbonée passivante.

A la lueur de ces résultats et en fonction de ces hypothèses, on peut envisager une adéquation de la réaction de carboxylation à la réaction d'halolyse.

L'adjonction d'éléments favorisant la poursuite du cycle redox, même en atmosphère fortement réductrice pourrait également améliorer la durée de vie du catalyseur même si elle n'empêche pas une perte de productivité.

CONCLUSION

Le travail entrepris montre que les zéolithes chargées modérément en rhodium ou en iridium sont actives dans la carboxylation de l'acétate de méthyle à pression atmosphérique. Si le rhodium est très actif mais se désactive très rapidement, l'iridium, moins actif, manifester une stabilité raisonnable à pression atmosphérique.

La désactivation observée dans le cas du rhodium semble être due à l'accumulation de l'iodure d'acétylène.
REFERENCES

2 P. GELIN, G. LEFEBVRE, B. ELLEUCH, Y. BEN TAARIT, A.C.S. symposium serie. 218, by Galen d. strukey (Editor) 455 (1983).