ACTION DES HYDRAZIDES SUR LES IMIDATES :

NOUVELLE VOIE D'ACCÈS AUX [1, 2, 4] TRIAZOLO [1, 5, c]

QUINAZOLINES ET AUX [1, 2, 4] TRIAZOLO [1, 5, c] PYRIMIDINES

M.L. BENKHOUD, H. MRAIHI et B. BACCAR.

Département de chimie, Faculté des sciences de Tunis, Campus universitaire, 1060 Tunis (Tunisie).

RÉSUMÉ: Les condensation des hydrazides sur les N-(2 cyanophényl) imidates et les N-crotonitriles imidates constituent une excellente voie d'accès respectivement aux [1, 2, 4] triazolo [1, 5, c] quinazolines et aux [1, 2, 4] triazolo [1, 5, c] pyrimidines.

I. Introduction.

Les imino-esters N-substitués comportant un groupement fonctionnel en α et β de l'azote ont été utilisés avec succès dans la synthèse de nombreux hétérocycles azotés simples (triazoles (1), oxodiazoles (2), imidazoles (3), triazines (4), pyrimidines (5) etc.) ou condensés (purines (6), triazolotriazines (7) benzimidazolotriazines (8), quinazolines (9) etc.).

Dans ce travail nous montrons que l'action des hydrazides sur les N-(2-cyanophényl) imidiates (1) et les N-crotonitriles imidates (A) conduit respectivement aux [1, 2, 4] triazolo [1, 5, c] quinazolines et aux [1, 2, 4] triazolo [1, 5, c] pyrimidines, composés ayant des multiples applications dans les domaines pharmaceutiques, agricoles, etc. [10, 11, 12, 13].

$$R - C$$
 $OEt CN$
 $R - C$
 $OEt CN$
 $OEt CN$
 $OEt CN$
 $OEt CN$

II. Résultats.

1) Préparation des [1, 2, 4] triazolo [1, 5, c] quinazolines.

Les hydrazides sont connues pour réagir avec les iminoesters et conduire à des N-1 acylamidrazones. En général de tels composés sont peu stables; le chauffage les tranforme en divers hétérocycles [1, 14]. Dans le cas présent les amidrazones obtenues peuvent conduire à deux hétérocycles différents; un triazole (schéma 1, voie (b) ou une quinazoline (schéma 1, voie (a).

Le chauffage dans le méthanol absolu de quantités équimolaires d'hydrazide et d'imidate fournit directement un produit cyclique. Les spectres IR des produits isolés ne présentent pas de bandes attribuables aux groupements -NH- COR $(\nu \text{ NH} \sim 3410 \text{ et } \nu \text{ CO} \sim 1670) = \text{NH} (\nu \text{ NH} \sim$ 3460) et $\nu C = N \sim 1635$) structure (IV), ni celle attribuable à $C = N (\nu C = N \sim 2215)$ structure (VI). L'absence de bande caractéristique du motif C≡N permet d'exclure la voie (b). La cyclisation de l'acyl amidrazone (III) a donc suivit le chemin réactionnel (a); l'amido imino quinazoline (IV) s'étant cyclisée lors du chauffage en triazoloquinazoline (V). Le tableau I donne quelques indications sur les sept triazoloquinazolines obtenues par cette voie.

Ces résultats sont confirmés par les données de R.M.N. et l'analyse élémentaire d'un des composés.

$$R_{1} - C \xrightarrow{N} + NH_{2} - NH - C - R_{2} \xrightarrow{-E + OH} + R_{1} \xrightarrow{N} C = N$$

$$(I) \qquad (II) \qquad (III) \qquad H - N - C - R_{2} \qquad (IIII) \qquad NH - R_{2} \qquad (IIII) \qquad NH - C - R_{2} \qquad (IIII) \qquad NH - R_{2} \qquad (IIII) \qquad (IIII) \qquad NH - R_{2} \qquad (IIII) \qquad (IIII) \qquad NH - R_{2} \qquad (IIII) \qquad (IIII) \qquad (IIII) \qquad NH - R_{2} \qquad (IIII) \qquad (IIIII) \qquad (IIII) \qquad (IIII) \qquad (IIII) \qquad (IIII) \qquad (IIII) \qquad (IIII) \qquad (IIIII$$

Produit	R,	R ₂	Durée en reflux (en H)	Rdt %	Pt de fusion (°C)
ν,	Ме	0-	48	80	196
V,	Et	<u></u>	48	80	158
V _c	Ме		48	75	143
V _d	Et	СН ₂.	48	70	120
V.	Me	√	72	55	192
V,	Et	Ó	72	60	170
v,	Et	CH ₁	72	40	148

TABLEAUI

2) Préparation des [1, 2, 4] triazolo [1, 5, c] pyrimidine.

Le mécanisme de la réaction est identique à celui des N-(2cyano-phényl) imidates. La pre-

mière étape conduit à une pyrimidine (B) qui se cyclise en triazolopyrimidine (C).

Les rendements et les points de fusion des sept triazolopyrimidines isolées sont consignés dans le tableau II.

Produit	R,	R ₂	Durée en reflux (en H)	Rdt %	Pt de fusion (°C)
C-1	Me-	□>	48	80	138
C-2	Et-		48	80	115
C-3	Me		72	50	166
C-4	Et		72	60	126
C-5	Me	\bigcirc	72	65	154
C-6	Et	\bigcirc	72	65	118
C-7	Me	M _r _	72	55	112

TABLEAU II.

III. Partie expérimentale

Les spectres I.R. ont été enregistrés sur un sepectromètre du type Perkin-Elmer 681 ceux de R.M.N. ont été mesurés à 60 MHz sur un appareil JEOL 60 avec le T.M.S. comme référence interne.

Le mode opératoire est général, nous les décrivons à propos d'un exemple (Va): on chauffe à reflux durant quelques heures (tableaux I et II), un mélange de 20 ml de méthanol absolu, 0,02 mole d'imidate I-a et 0,02 mole de benzhydrazide (II-a). En refroidissant le mélange, un précipité abondant apparaît. On filtre et on recristallise deux fois dans le méthanol.

$$V_a = C_{15}N_4H_{12}$$

	% N	% C	% H
Calculé	21,6418	74,6307	4,6494
Trouvé	21,6812	73,5409	4,6193

Les données I.R et de R.M.N. des composés obtenus sont consignées dans le tableau III.

TABLEAU III						
Produits	$IR(CHI_3) e$ $\nu_C = N$	n cm ⁻¹ v _{C = C}	RMN (CDCl ₃) en ppm			
CH ₃ -(b)	1630 (F) 1615 (f)	1605	3,15 (s, 3, H _a) 7,6-8,9 (m, 9, H _b)			
CH ₃ -CH ₂ -N-(c)	1630 (F) 1620 (f)	1610	1.65 (t. 3, H _a) 3.55 (q. 2, H _b) 7.6-8.9 (m. 9, H _c)			
(c) (c) (a) (a) (b) (c) (c) (c)	1630 (F) 1615 (f)	1605	3,1 (s, 3, H _a) 4,45 (s, 2, H _b) 7,3-8,8 (m, 9, H _c)			
(a) (b) (d) CH ₃ -CH ₂ (a) (b) N (d) CH ₂ (c)	1630 (F) 1615 (f)	1570	1,55 (t, 3, H _a) 3,4 (q, 2, H _b) 4,4 (s, 2, H _c) 7,2-8.7 (m, 9, H _d)			
(a) N (b)	1630 (F) 1615 (f)	1610	2,45 (s, 3, H _a) 7,85-9,2 (m, 8, H _b)			
CH ₃ -CH ₂ -N-(c)	1630(F) 1615(f)	1570	1,6 (t. 3, H _a) 3,45 (q. 2, H _b) 7,5-9 (m, 8, H _c)			
	(b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	Produits IR(CHI ₃) et 1630 (F) 1615 (f) 1630	Produits $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

٧.8	CH ₃ -CH ₂ (d) (a) (b) N N CH ₃ (c)	1630 (F) 1620 (f)	1605	1,55 (t, 3, H _a) 2,65 (s, 3, H _c) 3,35 (q, 2, H _b) 7,5-8,5 (m, 4, H _d)
C. 1	CH ₃ - (b) CH ₃ - (c) (d)	1630 (F) 1625 (f)	1605 1580	2,6(s,3,H _b) 3,05(s,3,H _a) 7,35(s,1,H _c) 7,5-8.5(m,5,H _d)
C.2	CH ₃ -CH ₂ -('N-H (d)	1630 (F) 1620 (f)	1605 1580	1.5(t, 3, H _a) 2.6(s, 3, H _c) 3.35(q, 2, H _b) 7,3 (s, 1, H _d) 7.5 -8.45 (m, 5, H _c)
C.3	CH ₃ -(b) CH ₃ -(b) H (c)	1630 (F) 1620 (f)	1610	2,5 (s, 3, H _b) 3 (s, 3, H _a) 7,4 (s, 1, H _c) 8,2-9 (m, 4, H _d)
C.4	CH ₃ -CH ₂ (c) (a) (b) N N (e)	1630 (F) 1625	1610	1.5 (1.3, H_a) 2.6 (s, 3, H_c) 3.4 (q, 2, H_b) 7.35 (s, 1, H_d) 8,1-8,9 (m, 4, H_c)

C•5	CH ₃ (b) CH ₃ (c)	1630(F) 1620(f)	2,55 (s, 3, H _b) 3 (s, S, H _a) 7,35 (s, 1, H _c) 8.1 – 8.9 (m, 4, H _d)
C•6	(a) (b) N (d) CH ₃ -CH ₂ (a) (b) N (d) H (d)	1630(F) 1620(f)	1,45 (t, 3, H _a) 2,5 (s, 3, H _c) 3,35 (q, 2, H _b) 7,4 (s, 1, H _d) 8-8,8 (m, 4, H _c)
c.7	CH ₃ -CH ₂ (c) (a) (b) N (d) CH ₃ (e)	1630 (F) 1600 1615 (f)	$1,4(t,3,H_a)$ $2,45(s,3,H_c)$ $2,5(s,3,H_c)$ $3,2(q,2,H_b)$ $7,1(s,1,H_d)$

s: singulet - t: triplet - q: quadruplet - m: multiplet - F: forte: f: faible.

Soumis en janvier 1989 - Accepté en mars 1989

RÉFÉRENCES

- Baccar B., Barrans J. C.R Acad. Sci., Paris, 1964, 259, 1340.
- Milcent R., Redenilh C. J. Heterocycl. Chem., 1977, 14, 1:53-58.
- Cornforth J.W., Cornforth R.H. J. Chem Soc., 1947, 96, 96-102.
- Baccar B. C.R. Acad. Sci., Paris, 1967, 264, 352.
- Brown D.J., Enega K.I. J. Chem Soc., Perkin I, 1974.
 3, 372-378
- Hajjem B., Kaddachi M.T., Baccar B. J. Soc. Chim. Tunisie, 1985, 2, 2:15.

- Kaddachi M.T., Hajjem B., Baccar B. J. Soc. Chim. Tunisie, 1988, 2, 7.
- Lalezari, I., Nabahi S. J. Heterocycl. Chem. 1980, 17, 1121.
- 9. Leiby R.W. J. Org. Chem., 1985, 50, 2926.
- Allen T.E., Brown D.J., Cowden W.B., Grigg et coll. I. Antibio., 1984, 34, 4:376-383.
 C.A., 1984, 101, 16917.
- Hardy R.A. Jr. Baker J.S., Quinones N.Q. U.S. 4269, 980, C.A., 1981, 95, 62, 258.
- Nizamuddin G.S.n Singh K.K. Indian J. Chem (Section B.), 1982, 21B, 4:377-378, C.A., 1982, 97, 182349.
- Swingle K.F., Hammerbeck D.M., Schmid J.R. Arch. Int. Parmacodyn. Ther., 1987, 286, 2:255-271, C.A., 1987, 107, 614.
- Pconian M.S., Nowoswiat E.F. J. Org. Chem., 1977, 42, 1109.