SYNTHÈSE DE SULFATES ACIDES MIXTES DE MÉTAUX

ALCALINS $\text{Cs}_{1-x}\text{Rb}_x\text{HSO}_4$ ($0 < x < 1$)

SYNTHESIS OF MIXED ALKALI ACID SULFATES

$\text{Cs}_{1-x}\text{Rb}_x\text{HSO}_4$ ($0 < x < 1$)

T. MBIRI
Laboratoire de l'Etat Solide
École Nationale d'Ingénieurs de Sfax, 3038 Sfax - Tunisie.

RESUME :

Quelques compositions d'une solution solide de sulfates acides mixtes de métaux alcalins $\text{Cs}_{1-x}\text{Rb}_x\text{HSO}_4$ ont été synthétisées par deux méthodes :

a) Par évaporation lente à $T = 300$ K de solutions aqueuses stoichiométriques.

b) Par fusion et trempe de mélanges pulvérulents de CsHSO_4 et RbHSO_4.

Les paramètres cristallins ont été déterminés en utilisant conjointement la diffraction de poudre et les méthodes du cristal tournant de Weissenberg ou de précéssion. La comparaison des densités calculées avec celles mesurées par pycnométrie ou déduites des masses des échantillons pastillisés et de leur volume, permet de conforter la détermination des paramètres.

ABSTRACT :

Some compositions of solid-solution $\text{Cs}_{1-x}\text{Rb}_x\text{HSO}_4$ in the CsHSO_4-RbHSO_4 system have been synthesized by two methods :

- Single crystals were grown by slow evaporation at 300K in aqueous solution by mixing in appropriate molar ratios Cs_2SO_4 and Rb_2SO_4 in sulphuric acid and adding a little water.

- $\text{Cs}_{1-x}\text{Rb}_x\text{HSO}_4$ ($0.1 < x < 0.9$) materials have been synthesized by melting mixing of CsHSO_4 and RbHSO_4 powders and quenching in liquid nitrogen.

The unit-cell dimensions have been determined by using X-ray powder patterns, Weissenberg and Precéssion methods. A comparison between density measurements from pellets mass determination and from unit-cell parameters calculation (X-ray results) allows to confort the unit-cell parameters determination and the unit-cell parameters derived from a least-squares treatment of powder data. A rough draft of phase diagram of binary CsHSO_4-RbHSO_4 is presented.
1- INTRODUCTION

L'hydrogénosulfate de césium Cs(HSO₄)₂ est un composé intéressant du fait qu'il conduit à T = 417 K à une phase superconductrice ionique protonique (S CI) avec des propriétés électriques élevées σ = 10⁻² nS/cm² (1,2,3,4). La substitution partielle du cation Cs⁺ par des ions plus petits a permis d'assortir fortement la transition de phase superconductrice ionique protonique TₜCI dans ces composés mixtes Cs₁₋ₓRbₓHSO₄ tout en rapprochant leurs propriétés électriques des phases de haute et de basse température (5,6) afin de rendre leur application possible.

En effet ces conducteurs protoniques sont utilisables dans de nombreux dispositifs électrochimiques solides (capteurs, supercondensateurs, piles, affichages électrochromes...) (7). Dans des travaux précédents (5,6), nous avons montré la possibilité d'obtenir des verres à la suite de traitements thermiques (fusion-trempe) successifs.

Dans ce travail, nous donnons le diagramme de phase du système Cs(HSO₄)₂-Rb(HSO₄). Nous décrivons aussi le modèle de préparation de ces composés intermédiaires ainsi que la détermination des paramètres cristallins. Un comportement assez particulier est noté pour le composé Cs₀,₄Rb₀,₆(HSO₄) avec des changements structuraux intenses (5,6). Ceci est probablement dû à l'établissement d'un ordre des cations Cs⁺ / Rb⁺.

2- PARTIE EXPÉRIMENTALE

2.1- Synthèse

Les composés mixtes Cs₁₋ₓRbₓHSO₄ ont été préparés par deux méthodes :

1°) des monocristaux transparents Cs₁₋ₓRbₓHSO₄ ont été obtenus par évaporation lente à T = 300 K de solutions aqueuses stoechiométriques

(1-x) Cs₂SO₄ + x Rb₂SO₄ + H₂SO₄ \rightarrow 2Cs₁₋ₓRbₓHSO₄

Les cristaux ont recueillis de la solution, nettoyés avec du papier filtre puis conservés dans des ampoules sous atmosphère sèche à température
<table>
<thead>
<tr>
<th></th>
<th>calc</th>
<th>exp</th>
<th>calc</th>
<th>exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs<sub>0.9</sub>Rb<sub>0.1</sub>HSO<sub>4</sub></td>
<td>53.1</td>
<td>51.3</td>
<td>3.79</td>
<td>3.36</td>
</tr>
<tr>
<td>Cs<sub>0.85</sub>Rb<sub>0.15</sub>HSO<sub>4</sub></td>
<td>56.71</td>
<td>51.13</td>
<td>5.75</td>
<td>5.74</td>
</tr>
<tr>
<td>Cs<sub>0.8</sub>Rb<sub>0.2</sub>HSO<sub>4</sub></td>
<td>48.24</td>
<td>49.33</td>
<td>7.76</td>
<td>7.63</td>
</tr>
<tr>
<td>Cs<sub>0.78</sub>Rb<sub>0.22</sub>HSO<sub>4</sub></td>
<td>47.75</td>
<td>47.31</td>
<td>8.56</td>
<td>8.51</td>
</tr>
<tr>
<td>Cs<sub>0.65</sub>Rb<sub>0.35</sub>HSO<sub>4</sub></td>
<td>40.56</td>
<td>35.01</td>
<td>74</td>
<td>15.4</td>
</tr>
<tr>
<td>Cs<sub>0.6</sub>Rb<sub>0.4</sub>HSO<sub>4</sub></td>
<td>32.2</td>
<td>33.9</td>
<td>20.73</td>
<td>21.88</td>
</tr>
<tr>
<td>Cs<sub>0.4</sub>Rb<sub>0.6</sub>HSO<sub>4</sub></td>
<td>26.39</td>
<td>26.2</td>
<td>25.46</td>
<td>15.09</td>
</tr>
<tr>
<td>Cs<sub>0.33</sub>Rb<sub>0.67</sub>HSO<sub>4</sub></td>
<td>22.23</td>
<td>21.9</td>
<td>20.59</td>
<td>20.7</td>
</tr>
<tr>
<td>Cs<sub>0.25</sub>Rb<sub>0.75</sub>HSO<sub>4</sub></td>
<td>17.71</td>
<td>17.2</td>
<td>32.59</td>
<td>32.66</td>
</tr>
<tr>
<td>Cs<sub>0.2</sub>Rb<sub>0.8</sub>HSO<sub>4</sub></td>
<td>13.85</td>
<td>13.2</td>
<td>35.62</td>
<td>37</td>
</tr>
<tr>
<td>Cs<sub>0.1</sub>Rb<sub>0.9</sub>HSO<sub>4</sub></td>
<td>7.1</td>
<td>7.7</td>
<td>41.09</td>
<td>42.35</td>
</tr>
<tr>
<td>RbHSO<sub>4</sub></td>
<td>calc</td>
<td>exp</td>
<td>46.64</td>
<td>47.25</td>
</tr>
</tbody>
</table>

Note: The table may not display properly due to the limitations of the text-based format.
Fig. 1:

a) Densité expérimentale mesurée sur des pastilles (triangle blanc ; V)
- Densité calculée (astérisque noir ; *)
- La distance inter-réticulaire d pour la première raie intense des diagrammes de RX.
 (carré noir correspond à des cristaux obtenus par évaporation)
 (carré blanc correspond à des pastilles préparées par fusion et trempe)

b) Diagramme de transitions de phase du système CaHSO₄-RbHSO₄
 établi à partir des compositions cibles et des résultats d'analyse.
 * Compositions obtenues par évaporation
 o Échantillons préparés par fusion-trempe.
Fig. 2 : Evolution de la température de fusion T_0 des composés $Cs_{1-x}Rb_xHSO_4$ en fonction du taux de Rubidium.
ambiante. Ces composés sont assez stables et ne sont pas hygroscopiques. Ces cristaux ont des dimensions variables de (0,5 x 0,5 x 0,3) mm³ jusqu'à (10 x 7 x 2) mm³ avec une forme rhomboédrique ou plaquette hexagonale.

2°) Des échantillons polycristallins blancs ont été synthétisés en préparant des tubes contenant des mélanges pulvéreux de CaHSO₄ et de RbHSO₄ portés jusqu'à la fusion puis trempés par immersion dans l'acide liquide. Cette dernière opération est répétée plusieurs fois. Les compositions ont été déterminées par analyse des teneurs des différents éléments Ca, Rb et S (dosages effectués par le service d'analyse CNRS, 69 Vernaizon France). Les résultats sont résumés dans le tableau I.

2.2- Caractérisation

Les diffractogrammes Fig. 3 ont été enregistrés avec la radiation K du cuivre, à l'aide d'un générateur Philips PW 1140/90. Pour certains cristaux, les paramètres cristallins ont été déterminés en utilisant les méthodes du cristal tournant de Weissenberg ou de Précession à l'aide d'un diffractomètre NONIUS CAD4. Des programmes de calcul ont été utilisés pour indexer les différentes raies et affiner les paramètres de maille. Les analyses chimiques (Tab. I); les diagrammes de RX (Fig. 3) et le diagramme de phases (Fig. 1) montrent que les solutions solides Caₓ₁₋ₓRbₓHSO₄ peuvent se former aussi bien à partir de solutions aqueuses qu'à partir de la fusion des mélanges de poudre CaHSO₄ et RbHSO₄. Le tableau II permet de comparer les paramètres des mailles de cette série de composés. La figure 2 montre l'évolution de la température de fusion (T = f(x)) en fonction du taux de Rubidium. Ces températures ont été déterminées par calorimétrie différentielle à balayage (DSC).

3-ÉTUDE RADIOCRISTALLOGRAHIQUE

* Les solutions solides Caₓ₁₋ₓRbₓHSO₄ sont isomorphes au composé mère CaHSO₄ qui cristallise dans le système monoclinique avec le groupe d'espace (P2₁/m), de paramètres : a = 7,304 Å; b = 5,81 Å; c = 5,491 Å; β = 101,59°; Z = 2 d'après ITOH et coll. (1981), [10]. Pour certaines compositions les paramètres de maille ont été déterminés par les méthodes de cristal tournant, Weissenberg et Précession. Ce qui nous a permis d'indexer le reste
Fig. 3 :
Diagrammes de poudre des différentes compositions
$\text{Cs}_{1-x}\text{Rb}_x\text{HSO}_4$ ($0 < x < 1$)
Fig. 4 :

Évolution des paramètres cristallins a, b et c et du volume de la maille élémentaire en fonction de x pour la famille de composés Cs$_{1-x}$Rb$_x$HSO$_4$.
<table>
<thead>
<tr>
<th>Composés</th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
<th>V(Å)³</th>
<th>Z</th>
<th>d_exp</th>
<th>d_calc</th>
<th>Groupe d'espace</th>
<th>Système cristal</th>
<th>b</th>
<th>Tₑ (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsHSO₄ (10)</td>
<td>7,25</td>
<td>5,80</td>
<td>5,47</td>
<td>226</td>
<td>2</td>
<td>3,34</td>
<td>3,38</td>
<td>P2₁/m</td>
<td>monoclinique</td>
<td></td>
<td>1015</td>
</tr>
<tr>
<td>Cs₀,₉₂₅Rb₀,₉₇₅HSO₄</td>
<td>7,22</td>
<td>5,92</td>
<td>5,51</td>
<td>227</td>
<td>2</td>
<td>3,3</td>
<td>3,29</td>
<td>P2₁</td>
<td>monoclinique</td>
<td></td>
<td>102₃₂</td>
</tr>
<tr>
<td>Cs₀,₆₅Rb₀,₃₅HSO₄</td>
<td>7,15</td>
<td>5,66</td>
<td>5,35</td>
<td>217,3</td>
<td>2</td>
<td>3,3</td>
<td>3,40</td>
<td>P2₁2₁2</td>
<td>orthorhombique</td>
<td></td>
<td>47₈</td>
</tr>
<tr>
<td>Cs₀,₇₀Rb₀,₃₀HSO₄</td>
<td>7,11</td>
<td>5,75</td>
<td>5,23</td>
<td>215,4</td>
<td>2</td>
<td>3,2</td>
<td>3,30</td>
<td>P2₁2₁2</td>
<td>orthorhombique</td>
<td></td>
<td>46₈</td>
</tr>
<tr>
<td>Cs₀,₅₅Rb₀,₄₅HSO₄</td>
<td>7,41</td>
<td>5,81</td>
<td>5,29</td>
<td>227,8</td>
<td>2</td>
<td>-</td>
<td>3,10</td>
<td>P2₁2₁2</td>
<td>orthorhombique</td>
<td></td>
<td>45₃</td>
</tr>
<tr>
<td>Cs₀,₉₅Rb₀,₀₅HSO₄</td>
<td>7,20</td>
<td>5,79</td>
<td>5,30</td>
<td>221,2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>P2₁2₁2</td>
<td>orthorhombique</td>
<td></td>
<td>45₀</td>
</tr>
<tr>
<td>Cs₁,₀₄Rb₀,₆₄HSO₄</td>
<td>7,51</td>
<td>6,26</td>
<td>4,66</td>
<td>213,7</td>
<td>2</td>
<td>3,0</td>
<td>3,13</td>
<td>P2₁/m</td>
<td>monoclinique</td>
<td></td>
<td>101₇₆</td>
</tr>
<tr>
<td>Cs₀,₃₃Rb₀,₆₆HSO₄</td>
<td>7,57</td>
<td>6,20</td>
<td>4,62</td>
<td>217,1</td>
<td>2</td>
<td>-</td>
<td>3,02</td>
<td>P2₁2₁2</td>
<td>orthorhombique</td>
<td></td>
<td>4₉₃</td>
</tr>
<tr>
<td>Cs₀,₄₀Rb₀,₆₀HSO₄</td>
<td>7,41</td>
<td>6,25</td>
<td>4,57</td>
<td>212,6</td>
<td>2</td>
<td>2,8</td>
<td>2,88</td>
<td>P2₁2₁2</td>
<td>orthorhombique</td>
<td></td>
<td>4₉₈</td>
</tr>
<tr>
<td>Cs₀,₁₄Rb₀,₈₆HSO₄</td>
<td>7,35</td>
<td>6,2₃</td>
<td>4,61</td>
<td>220,5</td>
<td>2</td>
<td>2,7</td>
<td>2,82</td>
<td>P2₁2₁2</td>
<td>orthorhombique</td>
<td></td>
<td>4₇₀</td>
</tr>
<tr>
<td>RbHSO₄ (9)</td>
<td>7,40</td>
<td>7,1</td>
<td>4,62</td>
<td>212</td>
<td>2</td>
<td>-</td>
<td>2,73</td>
<td>P2₁/c</td>
<td>monoclinique</td>
<td></td>
<td>120₇₉</td>
</tr>
<tr>
<td>RbHSO₄ (11)</td>
<td>7,₃₈</td>
<td>6,1₅</td>
<td>4,6₂</td>
<td>210</td>
<td>2</td>
<td>-</td>
<td>2,₇₄</td>
<td>pseudo-orthorhombique</td>
<td>8₉₇₉</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
des diagrammes des autres produits. Nous pouvons noter que le squelette de cette famille de produits est identique à celui du CsHSO₄ puisqu'il est toujours défini par l'arrangement des atomes Cs⁺ suivant un plan hexagonal (a, c) et des chaînes en zig-zag suivant l'axe b des anions HSO₄⁻ (Fig. 5). Les longueurs moyennes des paramètres a, b, c sont approximativement a = 7,3 Å ; b = 6 Å ; c = 5 Å. Nous devons préciser que l'indexation nous a menée régulièrement à ces valeurs ; quelques autres solutions sont mathématiquement possibles mais elles ne sont pas compatibles avec les mesures de densité.

* Pour les faibles substitutions x = 0,1 - 0,4 ; la similitude des diagrammes de poudre de Cs₁₋ₓRbxHSO₄ et de CsHSO₄ montre que ces composés sont isotypes (Tab. II et Fig. 3). Les paramètres de maille sont déterminés aisément. Ces différents produits cristallisent tous dans les systèmes monocliniques (β = 101-102°) ou orthorombiques. Une légère variation des paramètres par rapport à ceux de CsHSO₄ est observée, nous pouvons conclure que la structure n'a pas été trop perturbée à la suite de cette faible substitution jusqu'à une teneur de 40 % de rubidium.

* Pour les fortes substitutions ; en ce qui concerne les composés contenant plus de 20% de rubidium, les réseaux cristallins sont perturbés mais sans très grande modification structurale (Fig. 3). Les paramètres a et b ne bougent pas beaucoup (a/b = 5 %), seul le paramètre c varie (ac/c = 15 à 20 %), il passe de 5,3 à 4,6 Å (Tab. II et Fig.4) ceci peut être corréllé avec la substitution de l'ion Cs⁺ par un ion alcalin de rayon plus petit (r Cs⁺ > r Rb⁺ > r K⁺ > r Li⁺). Les variations des rayons ioniques influent sur les paramètres et par suite sur les volumes des mailles. Nous avons observé une réduction importante du volume de maille pour des fortes substitutions au lithium et au potassium V = 180 Å³ (8). Par contre dans le cas de la substitution au rubidium r Rb⁺ est voisin de r Cs⁺, le volume reste sensiblement constant V = 220 Å³. Cependant une diminution assez sensible du volume de maille est rencontrée dans le cas de Cs₀,₄Rb₀,₆HSO₄ où on assiste à une réduction du volume de maille V = 213 Å³ à la suite d'une réduction assez importante du paramètre c = 4,6 Å, cette observation peut être expliquée par une modification structurelle déjà observée en spectroscopie IR et Raman (5) où le spectre de Cs₀,₄Rb₀,₆HSO₄ est très différent de celui de Cs₁₋ₓRbxHSO₄ avec x < 0,5 et ressemble à celui de RbHSO₄ (5). Ce dernier composé possède une structure à base de chaînes à liaison hydrogène asymétrique (5)(9)et(13).
Fig. 3 : Représentation schématique de la structure de CsH$_2$SO$_4$:
projection sur les plans (a,c) (haut) et (a,b) (bas).
Grand cercle blanc : Cs$^+$, petit cercle blanc : O$_2^-$, cercle noir : S, petit cercle noir entouré : H$^+$.
Cette anomalie structurale s’est repercutée sur les valeurs de conductivité, de l’énergie d’activation E_a (5) (6) et des paramètres thermodynamiques (8).

4 - CONCLUSION

La substitution partielle des ions Cs$^+$ par des ions Rb$^+$ conduit à la formation de nouvelles solutions solides de sulfates acides mixtes $\text{Cs}_{1-x}\text{Rb}_x\text{HSO}_4$ ($0 < x < 1$). Deux voies de synthèse ont été décrites et elles ont permis d’élaborer une ébauche du diagramme de phases du système CsHSO$_4$ et RbHSO$_4$. Deux phases α pour $0 < x < 0.5$ et β pour $0.5 < x < 1$ ont été mises en évidence, les données structurales et les résultats de rayons X montrent que ces composés $\text{Cs}_{1-x}\text{Rb}_x\text{HSO}_4$ ont une structure similaire à celle de CsHSO$_4$ avec des paramètres de maille voisins. Ces résultats préliminaires pourront être confirmés par des résolutions de structures d’un ou de plusieurs de ces composés.

REMERCIEMENTS :

Ce travail a été réalisé dans le cadre des accords de coopération DOST (Tunisie) CNRS (France). L’auteur remercie Docteur Ph. Colomben du CNRS France et Professeur A. Daoud du Laboratoire de l’Etat Solide-E.N.I.S. - Sfax Tunisie pour leurs discussions.

*Soumis en février 1990
*Accepté en mai 1991
REFERENCES:

8°) T. Mhiri, A Daoud and Ph. Colombar, Solid State Ionics (1990) 44