ALCOOLYSE DE QUELQUES N-(CYANOMÉTHYL) IMIDATES
Nouvelle voie de synthèse d'imidazol-5-ones et de 5-alcoxyimidazoles
B. HAJJEM, M. KAMMOUN, B. BACCAR
Laboratoire de synthèse organique, Département de chimie,
Faculté des sciences, Campus universitaire, 1060 Tunis, Tunisie.
(Soumis en novembre 1992, accepté en septembre 1993)

RÉSUMÉ
L'alcoollyse du groupement C=N des N-cyanométhyl imidates conduit, sans que l'on puisse isoler d'intermédiaire, aux imidazoles correspondants.

ABSTRACT
Basic or acid alcoolisis of C=N group in N-(cyanomethyl) imidates leads to imidazoles derivatives. The intermediate diimidate is not isolated.

INTRODUCTION
Depuis leur découverte par Schmidt (réf. 1) en 1914, les N-(cyanométhyl) imidates ont donné lieu à très peu de travaux. Pourtant les quelques études publiées (réf. 2-7) montrent que de tels composés peuvent être utilisés pour la synthèse de nombreux hétérocycles.

Dans ce travail nous montrons que l'alcoollyse du groupement C=N des imidates du type 1 constitue une bonne voie d'accès à des dérivés imidazoliques.
RÉSULTATS ET DISCUSSIONS

L'addition d'alcool sur l'insaturation C=N peut être réalisée soit en milieu acide (réf. 8) soit en milieu basique (réf. 9). Les rendements en imidates dépendant étroitement de la nature du catalyseur, nous avons soumis deux cyanimidates du type 1 à l'action d'alcools en milieu basique et en milieu acide.

a) Alcoolyse basique:

L'alcoolyse basique n'est pas recommandée quand le nitrile comporte un groupe -CH₂⁻ ou -CH< en α de la fonction C=N. L'alcoolate peut induire deux réactions compétitives: la formation d'un carbanion en α de la fonction nitrile (voie b) et l'addition sur le groupement C=N (voie a): (schéma 1)

La nature de l'alcoolate joue un rôle primordial dans l'orientation de la réaction. Si on utilise un tertbutylate ou un isopropylate, l'addition sur la fonction C=N est défavorisée par l'encombrement stérique et on forme sélectivement le carbanion que l'on peut alkyler (réf. 7). Avec les alcoolates issus d'alcools primaires, les deux réactions

Schéma 1
(a) et (b) ont lieu, mais l’addition sur la fonction C=NR n’étant pas réversible, la voie a est de ce fait favorisée. C’est effectivement ce que l’on observe quand on dissout un imidate du type 1 (R = PH, R’ = H) dans une solution d’alcoolate de sodium d’un alcool primaire en solution dans l’alcool correspondant.

Le diimidate qui se forme n’est pas isolable; il se cyclise rapidement en 5-alcooxyimidazole 2 (schéma 2)

![Diagramme de cyclisation](image)

\[2a : R = Me \quad 2b : R = sec. Bu \quad 2c : R = Bu \quad 2d : R = Ph → \text{CH}_2\]

Schéma 2

Les alcooxyimidazoles 2 (a-d) sont obtenus purs, comme en témoignent les analyses élémentaires et l’étude de leurs spectres I.R et de R.M.N 1H.

Des deux configurations tautomères 2 et 2’, les alcooxy- imidazoles adoptent la structure 2. En R.M.N 1H les protons des motifs >N-H et =CH apparaissent sous forme de singulets.

b) Alcoolysé acide.

Lorsque l’on fait barboter à froid un courant de chlorure d’hydrogène sec dans un mélange équimolaire d’imidate 1 et de méthanol, un précipité se forme quelques minutes après. Le traitement de ce sel par une solution aqueuse de triéthylamine permet de récupérer, par extraction à l’ether, un solide dont les spectres I.R et de R.M.N 1H montrent qu’il s’agit d’imidazolones 3.

La formation de ces composés peut être schématisée par la
séquence réactionnelle suivante : (schéma 3)

\[
\begin{align*}
&\text{R}^1\text{C-CH-CN} \quad \text{MeOH} \rightarrow \quad \text{R}^1\text{C-CH-CN} \\
&\text{R}^2\text{O}\text{Me} \quad \text{HCl sec} \quad \text{MeOH} \\
&\quad \text{R}^1\text{C-CH-CN} \quad \text{NH}_2\text{Cl}^- \\
&\quad \text{R}^1\text{C-CH-CN} \quad \text{NH} \\
&\quad \text{R}^2\text{O}\text{Me} \quad \text{Base} \\
&\quad \text{R}^1\text{C-CH-CN} \quad \text{CMe} \\
&\quad \text{R}^2\text{O}\text{Me} \quad \text{NH} \\
&\quad \text{H}_2\text{O} / \text{H}^+ \\
&\quad \text{H}_2\text{O} / \text{H}^+ \\
\end{align*}
\]

3a \(R^1 = \text{Ph}, \ R^2 = \text{H} \)
3b \(R^1 = p\text{-Me-Ph}, \ R^2 = \text{H} \)
3c \(R^1 = \text{Ph}, \ R^2 = \text{Me} \)
3d \(R^1 = \text{Ph}, \ R^2 = \text{Et} \)

Schéma 3

Les composés 3 (a-d) ont été identifiés par une étude spectroscopique l.r et de R.M.N \(^1\text{H}\) ainsi que par analyse élémentaire. Des deux formes tautomères 3 et 3', la R.M.N du \(^1\text{H}\) permet d'opter pour la configuration 3. Du fait de leur couplage réciproque, les protons des motifs \(>\text{N-H} \) et \(\text{CH}_2 \) apparaissent respectivement sous forme d'un triplet et d'un doublet.

PARTIE EXPÉRIMENTALE

Les points de fusion sont déterminés en capillaire avec un appareil Büchi. Les spectres l.r. sont enregistrés en solution dans un hydrocarbure perfluoré. L'appareil utilisé, un Perkin-Elmer modèle 681 donne la position des bandes d'absorption avec une précision de 2 cm\(^{-1}\).
L’enregistrement des spectres de R.M.N. 1H est effectué sur un appareil Geol C-46L 60MHz. Les déplacements chimiques sont donnés en ppm et sont comptés positivement vers les champs faibles par rapport au TMS pris comme référence interne.

Synthèse d’alcoxyimidazoles (2).

On ajoute (13,5g, 0,1mole) d’imidate 1 à une solution d’alcool anhydre (30 ml) contenant 0,005 mole de son alcoolate de sodium. On abandonne la solution à la température ambiante jusqu’à apparition d’un précipité que l’on recristallise dans le méthanol.

5-Methoxy-2-phenyl imidazole 2a. Rdt: 80%. F: 185°C. IR(cm$^{-1}$):

$\nu_{C=N} = 1580$, $\nu_{N-H} = 3160$. RMN 1H (DMSO-d6 + CDCl$_3$) à: 7.8 (m, 5H); 6.5(s, 1H); 7.5(s, 1H); 3.8(s, 3H). Analyse: calculé pour $C_{10}H_{10}N_2O$ (174):

C 69.90, H 5.74, N 16.09; trouvé: C 69.40 H 5.77, N 16.03.

5-Butoxy-2-phenyl imidazole 2b. Rdt: 50%. F: 166°C. IR(cm$^{-1}$):

$\nu_{C=N} = 1545$, $\nu_{N-H} = 3180$. RMN 1H (DMSO-d6 + CDCl$_3$) à: 7.5(m, 5H); 8.5(s, 1H); 7.5(s, 1H); 4.3(m, 1H); 1.2(d, 3H); 1.5(q, 2H); 0.9(t, 3H). Analyse: calculé pour $C_{13}H_{16}N_2O$ (216): C 72.22, H 7.40, N 12.96; trouvé: C 71.81, H 7.52, N 12.87.

5-Butoxy-2-phenyl imidazole 2c. Rdt: 45%. F: 180°C. IR(cm$^{-1}$):

$\nu_{C=N} = 1580$, $\nu_{N-H} = 3180$. RMN 1H (DMSO-d6 + CDCl$_3$) à: 7.5(m,5H); 6.5(s, 1H); 3.9(t, 2H); 2.1(s, 2H); 1.5(m, 2H); 0.9(t, 3H). Analyse: calculé pour $C_{13}H_{16}N_2O$ (216): C 72.22, H 7.40, N 12.96; trouvé: C 72.13; H 7.44; N 12.88.

5-Benzylxoy-2-phenyl imidazole 2d. Rdt: 45%. F: 190°C. IR(cm$^{-1}$):

$\nu_{C=N} = 1580$, $\nu_{N-H} = 3180$. RMN 1H (DMSO-d6 + CDCl$_3$) à: 7.9(m, 10H); 6.6(s, 1H); 5.1(s, 2H); 7.5(s, 1H).

Synthèse d’imidazolones (3).

On fait baver un léger excès de gaz chlorhydrique sec dans une solution de N-(cyanométhyl)benzimidate de méthyle 1 (4.35g, 0.025 mole)
et de méthanol (0.8g, 0.025 mole) dans l'éther anhydre (50ml) refroidi à 0°C. On laisse reposer la solution pendant 24 heures à la température du réfrigérateur (4°C environ). Un solide se forme. Il est filtré, lavé avec de l'éther anhydre, séché pendant une nuit dans un dessiccateur, puis traité par une solution froide de triéthylamine (5ml) dans l'eau (30ml). Par extraction à l'éther, on récupère un solide blanc que l'on recristallise dans l'éthanol.

4-Dihydrro-2-phenyl imidazol-5-one 3a: Rdt: 60%. F: 136°C. IR (cm⁻¹):
ν_C=O = 1640, ν_N-H = 3230. RMN ¹H (acétone-d6) δ 7.4 (m, 5H); 4.3 (d, 2H); 8.4 (t, 1H). Analyse: calculé pour C₉H₈N₂O (160): C 67.50, H 5.00, N 17.50; trouvé: C 67.14, H 4.91, N 17.52.

4-Dihydrro-2-(p-méthoxyphenyl) imidazol-5-one 3b: Rdt: 50%. F: 146°C. IR (cm⁻¹): ν_C=O = 1645, ν_N-H = 3300. RMN ¹H (DMSO-d6) δ 7.5 (m, 5H); 4.3 (d, 2H); 9.1 (t, 1H); 2.3 (s, 3H). Analyse: calculé pour C₁₀H₁₀N₂O (160): C 68.9, N 5.30, H 16.30; trouvé: C 68.79, H 5.74, N 16.16.

4-Hydro-4-méthyl-2-phenyl imidazol-5-one 3c: Rdt: 40%. F: 215°C. IR (cm⁻¹): ν_C=O = 1700, ν_N-H = 3300. RMN ¹H (DMSO-d6) δ 8.35 (d, 1H); 7.5 (m, 5H); 4.5 (m, 1H); 1.4 (d, 3H).

4-Hydro-4-ethyl-2-phenyl imidazol-5-one 3d: Rdt: 35%. F: 280°C. IR (cm⁻¹):
ν_C=O = 1700, ν_N-H = 3320. RMN ¹H (DMSO-d6) δ 8.2 (d, 1H); 7.5 (m, 5H); 4.3 (q, 1H); 1.7 (q, 2H); 0.9 (t, 3H).

RÉFÉRENCES
1. E. SCHMIDT; Ber. 47, 25 - 45. (1914).
6. H.W VAN MEETEREN et H. C. VAN DEN PLAS
8. A. PINNER; "Die imidatheter und ihre derivate" OPENHEIM BERLIN (1892).