RÉACTIVITÉ SPÉCIFIQUE DE LA 3-CHLORO-2-PHÉNYL-3-TRIFLUOROMÉTHYLACROLÉINE

A. SELMI*, M.M. EL GAIED*, G. ALVERNEHE**

* Laboratoire de chimie organique, Département de chimie, Faculté des sciences, Campus universitaire, 1060 Tunis, Tunisie.
** Laboratoire de chimie organique 3, UCB Lyon 1, URA CNRS 467, Bât du 11-Novembre 1918, 69622 Villeurbanne Cedex, France.
(Soumis en juillet 1993, accepté en janvier 1994)

Résumé: La réactivité de la 3-chloro-2-phényl-3-trifluorométhylacroléine vis-à-vis de divers nucéophiles est étudiée. Selon la nature du milieu et du réactif plusieurs mécanismes peuvent intervenir: addition 1,2 suivie ou non de réduction ou d'élimination et substitution en β suivie ou non d'addition 1,4.

Summary: 3-chloro-2-phenyl-3-trifluoromethylacrolein reactivity towards various nucleophiles has been studied. Depending on solvent and reagent several mechanisms are involved: 1,2 addition followed or not by reduction or elimination and β-substitution followed or not by 1,4 addition.

Les composés organofluorés se distinguent de leurs homologues hydrocarbonés par leur réactivité chimique originale (1) et par le nombre croissant d'applications qu'ils trouvent en biologie, médecine et agrochimie (2,3,4). Parmi ces composés, les molécules trifluorométhylées sont de plus en plus étudiées (5). Plusieurs méthodes directes de trifluorométhylation, sur des substrats déjà élaborés, ont été décrites (6). Toutefois, les agents de trifluorométhylation ne sont pas toujours d'accès facile. Pour cette raison, il est fréquent de préparer des synthons à partir de produits facilement accessibles portant déjà le groupement trifluorométhylé. C'est ainsi que la chlorotrifluorométhylacroléine A a été obtenue par réaction de Vilsmeier avec la benzyltrifluorométhylacétone. L'aldéhyde A est synthétisé sous forme de mélange de diastéréoisomères Z(60%) et E(40%), séparés par chromatographie sur colonne; les caractéristiques correspondant à la configuration de chaque stéréoisomère ont été établies (7) (schéma 1).
Les réactions de A avec des nucléophiles, tels le 1,2-éthanedithiol, le 2-aminéthanéthiol et le 2-aminothiophénol, ont conduit à des intermédiaires très intéressants (7). Ceci nous a incités à pousser plus loin nos investigations dans ce sens.

Nous présentons dans ce travail les résultats de l'étude de la réactivité de l'aldéhyde A (Z,E), vis-à-vis d'une série de réactifs nucléophiles.

L'action de NaBH₄ ou du DIBAL dans le THF sur A ne réduit que la fonction carboxyle et donne l'alcool 1 (schéma 2).

Les organomagnésiens simple et allylique, ainsi que l'hydrazine s'additionnent exclusivement sur la fonction aldéhyde, conduisant respectivement à des alcools secondaires 2 et 3 et une azine 4 (schéma 2).

Avec les magnésiens vinyliques, il se forme à côté de l'alcool biallylique 5 attendu, la cétone 6 et l'alcool 1, respectivement dans les proportions 53%, 20%, 27% (schéma 3) dont l'oxydation (CrO₃/pyridine/
CH₂Cl₂) conduit uniquement à la cétone 6 et l'aldehyde A,

\[
\begin{align*}
\text{Ph} & \quad \text{CHO} & \quad \text{Cl} \quad \text{CF}_3 & \quad \text{MgBr}^+ & \quad \text{THF} \quad \text{Ph} & \quad \text{OH} \\
& & & & & \quad \text{F}_3\text{C} \quad \text{Cl} \\
\text{A} & & & & & 5 \quad (53\%) \\
& & & & & 6 \quad (20\%) \\
& & & & & 1 \quad (27\%)
\end{align*}
\]

Schéma 3

Ces pourcentages ont été évalués à l'aide du spectre de RMN du proton du mélange, en comparant la courbe d'intégration couvrant les protons CH₂ de chaque composé.

La formation des produits 6 et 1, de pourcentages voisins, pourrait s'expliquer par un mécanisme de type Meerwein-Pondorf-Verley, (schéma 4).

\[
\begin{align*}
\text{Ph} & \quad \text{H} & \quad \text{O} & \quad \text{MgBr}^+ & \quad \text{Ph} \\
& & & & \quad \text{F}_3\text{C} \quad \text{Cl} \\
\text{A} & & & & 6 \\
& & & & 1
\end{align*}
\]

Schéma 4

Le phosphonoacétate de triéthyle réagit sur l'aldehyde A en présence de carbonate de potassium pour conduire par réaction de Wittig-Horner à un diène polyfonctionnel 7 (schéma 5).

\[
\begin{align*}
\text{Ph} & \quad \text{CH}_2\text{CO}_2\text{Et} \\
\text{Cl} & \quad \text{CF}_3 & \quad \text{K}_2\text{CO}_3 & \quad \text{Ph} & \quad \text{H} \quad \text{CO}_2\text{Et} \\
& & & & \quad \text{Cl} \\
\text{A} & & & & 7 \quad 2E, 4E: (28\%) \\
& & & & 2E, 4Z: (72\%)
\end{align*}
\]

Schéma 5
Les produits de la réaction de l'aldéhyde A avec la potasse dépendent du solvant utilisé : dans les conditions de Bodendorf (KOH/H₂O) (8), il se forme deux composés, le 1-phényl-3,3,3-trifluoropropyne et le 2-chloro-1-phényl-3,3,3-trifluoropropène, tandis que dans CH₂Cl₂, seul le dérivé alcyne est obtenu (9). Par contre, dans le THF, l'acroléine β-hydroxylée B résultant d'une substitution nucléophile en β est obtenu seulement sous la configuration Z, laquelle est stabilisée par liaison hydrogène (Schéma 6).

La diéthylamine, le méthanéthiolate de sodium et le diméthylcuprate de lithium attaquent également en β avec départ de l'ion chlorure (schéma 7).

Il faut signaler la valeur particulièrement basse du déplacement chimique du proton aldéhydique (δ=7,85ppm) du composé 9. Ceci peut
être interprété facilement en faisant remarquer que ce composé est un vinylogue des dialkylformamides dont les hydrogènes aldéhydiques ressonnent vers 8 ppm ; par ailleurs, dans le composé 9, le proton aldéhydique peut être encore légèrement blindé par sa position dans le cône d'anisotropie à effet positif du phényle.

L'absence de couplage entre le proton aldéhydique et le fluor (7) permet d'attribuer la configuration E au composé 9.

L'éthylèneglycol réagit sur l'aldéhyde A en présence de sodium pour conduire au dioxyolane 12 sans doute par le biais d'une réaction de substitution nucléophile en β suivie d'une addition 1,4 (schéma 8)

![Schéma 8](image)

Enfin il est à noter que l'étude de la réactivité de l' aldéhyde α,β-insaturé A vis-à-vis du Zn(Ag)/MeOH (10), du LiAlH4 /ICu (11) et du formiate de triéthylammonium en présence de palladium (12), n'a pas conduit à des résultats exploitables. D'autres nucléophiles, tels RNH₂ et RNH₂NH₂ sont en cours d'essais.

Partie expérimentale

Les spectres de RMN du proton ont été enregistrés en solution dans le chloroforme deutérié sur des appareils de type Jeol FX 60MHz et Varian EM 360. Les déplacements chimiques sont donnés en ppm par rapport au TMS pris comme référence interne. Les spectres de RMN du fluor ont été enregistrés sur un appareil Varian EM 360 fonctionnant à 56,4 MHz. Les déplacements chimiques des signaux décrits sont expressés en ppm par rapport au CFCl₃ pris comme référence interne.

Les spectres de masse ont été enregistrés sur un spectromètre NERMAG R10-105 fonctionnant à 70 eV par couplage chromatographique. Les spectres IR ont été enregistrés, en solution dans le dichlorométhane, sur un appareil Perkin-Elmer 681.
Les séparations par chromatographie sur colonne ont été réalisées sur du gel de silice Merck 60 (0,063 0,200 mm). Les éluants, dont les proportions sont données en volume, sont précisés dans le texte.

3-Chloro-2-phényl-4,4,4-trifluorobut-2-én-1-ol 1
2,07 g (8,84 mmol) de A dans 5 ml de THF sont ajoutés à une suspension de 0,083g de NaBH₄ (2,21 mmol) dans 20 ml de THF anhydre. Après 3 heures d'agitation à température ambiante, on hydrolyse et extrait à l'éther. On sèche sur MgSO₄. L'alcool obtenu est distillé sous vide.

Eb 78/0,6 mmHg Rdt : 90%
IR (cm⁻¹) 3600 (O-H) ; 1630 (C=C) ; 1140-1180 (C-F)
RMN ¹H 6,95-7,56 (m, 5 H) ; 4,46 (m, 2 H)
RMN ¹⁹F -58,6 ; -59,8

4-Chloro-3-phényl-5,5,5-trifluoropent-3-én-2-ol 2
1g d'aldéhyde A (4,26mmol) dans 10 ml d'éther anhydre est ajouté à une solution d'iodure de méthylmagnésium (1,2 eq). Après 1h de réaction au reflux de l'éther, le mélange est refroidi puis hydrolysé avec une solution de chlorure d'ammonium, extrait à l'éther, séché sur MgSO₄. L'évaporation du solvant et la purification par chromatographie sur colonne (éther de pétrole/éther: 80/20) donne 1g d'alcool.

Rdt : 90%
IR (cm⁻¹) 3350 (O-H) ; 1630(C=C) ; 1135-1180(C-F)
RMN ¹H 1,2 (d, J=3 Hz, 3H) ; 5,1(ç, =3 Hz, 1H) ; 6,9-7,4 (m, 5 H)
RMN ¹⁹F -58,3 ; -60,3

6-Chloro-5-phényl-7,7,7-trifluorohept-1,5-dièn-4-ol 3
On ajoute à 0°C 1g d'aldéhyde A dans 10 ml d'éther anhydre à une solution de bromure d'allymagnésium (1,2 eq) dans 50 ml d'éther. Après 10 heures de réaction à température ambiante, le mélange est hydrolysé à 0° avec une solution de HCl (0,1N) puis extrait à l'éther, le traitement habituel de la réaction et la purification par chromatographie sur colonne (éluant : chloroforme) donne 1g d'alcool.

Rdt : 84%
IR (cm⁻¹) 3580 (O-H) ; 1640 (C=C) ; 1140-1190 (C-F)
RMN ¹H 2,1(m, 2H) ; 4,48-5,26 (m, 3H) 5,4-6,13 (m, 1H) ; 6,93 - 7,6 (m, 5H)
RMN ¹⁹F -58,3 ; -60,3
Bis(3-chloro-2-phényl-4,4,4-trifluorobut-2-éna) azine 4
A une solution de 1 g (4,26 mmol) d'aldéhyde A dans 3 cm3 d'acide acétique, sont ajoutés 6 mmol d'hydrâzine. Le mélange est agité à température ambiante pendant 3 heures puis lavé avec une solution de soude à 20%, extrait à l'éther et séché sur MgSO$_4$. Après évaporation du solvant, le produit obtenu est recristallisé dans l'éther de pétrole.

Rdt : 80 %
PF : 142°C

IR (cm$^{-1}$) 1620-1540 (C=C et C=N), 1150 - 1190 (C-F)
RMN 1H 7,2-7,5 (m, 10 H) ; 8,46 (s, 2H)
RMN 19F -58,4 ; -60

Action du bromure de propénylmagnésium sur A
2,34 g d'aldéhyde A (9,9 mmol) dans 10 ml de THF sont ajoutés à une solution de bromure de propénylmagnésium (préparée par addition de 1,2g de 2-bromopropène dans 20 ml de THF à 0,24 g de magnésium).
Après 6 heures de réaction à température ambiante, le mélange réactionnel est hydrolysé à 0° avec une solution de NH$_4$Cl, extrait à l'éther, séché sur MgSO$_4$. La séparation par chromatographie sur colonne (éther de pétrole / éther: 80/20) de 2,25 g du mélange obtenu a donné dans l'ordre d'éluion : \mathcal{G} (0,35 g ; 12,7%), \mathcal{H} (1,2 g ; 43%), \mathcal{L} (0,2 g ; 8,4%).

5-Chloro-2-méthyl-4-phényl-6,6,6-trifluorohex-1,4dién-3-ol 5
IR (cm$^{-1}$) 3600 (O-H) ; 1145-1190 (C-F)
RMN 1H 1,7 - 1,8 (2s, 3H) ; 4,8 (m,1H) ; 4,93(m,1H)
RMN 19F 5,5 (m,1H) ; 6,93-7,34 (m, 5H)
RMN 19F -58 ; -60

5-Chloro-2-méthyl-4-phényl-6,6,6-trifluorohex-1,4-diên-2-one 6
IR (cm$^{-1}$) 1680 (C=O) ; 1555-1190 (C-F)
RMN 1H 1,9 (m, 3H) ; 6,1 (m, 2 H) ; 7,33 (s, 5H)
RMN 19F -61,33 ; -64,2
SM m/z 274(M+,7) ; 276(2) ; 239(6);170(3);69(100);41(51)
Rdt: 80 %
IR (cm$^{-1}$) 1725 (C=O)
RMN1H 3,7 - 4,05 (m, 5H) ; 7,16 - 7,53 (m, 5H)
 9,91 (d, J=2Hz, 1H)
RMN19F -80,6

Bibliographie