ÉTUDE DE L'INFLUENCE D'IONS MAGNÉSIUM SUR LA CROISSANCE CRISTALLINE DU SULFATE DE CALCIUM DIHYDRATÉ

S. GHIRBEL**, H.F. AYEDI***, J.-C. HEUGHEBAERT***

* Unité de chimie appliquée, INRST, BP 95, Boudj Cedra, Tunisie.

** Laboratoire de chimie physique et inorganique, École nationale d'ingénieurs de Sfax (ENIS), PB W, Sfax, Tunisie.

*** Laboratoire de physico-chimie des solides, ERA-CNRS, N°445, 38, rue des 36-Points, 31400 Toulouse, France.

(Résumé en février 1993, accepté en janvier 1994)

RÉSUMÉ
La cinétique de cristallisation du sulfate de calcium dihydraté en présence d'ions magnésium a été étudiée à 30°C par la méthode de composition constante. L'effet inhibiteur des ions magnésium sur la croissance a été relié à leur adsorption sur des sites particuliers de croissance.

ABSTRACT
The kinetics of crystallization of calcium sulfate dihydrate has been studied at 30°C, in magnesium poisoned solutions by constant composition method. The inhibitory effect of the magnesium ions on the rate of crystallization has been attributed to their adsorption at particular sites.

1- INTRODUCTION
Pour répondre à des besoins industriels spécifiques, on est de plus en plus conduit à mettre en œuvre des additifs dans les réacteurs de cristallisation. L'intervention de ces additifs permet soit d'améliorer la qualité des produits souhaités suite à des modifications de leurs caractéristiques (taille, forme, densité des cristaux,...) soit d'empêcher toute cristallisation de produits non désirés soit encore de prévenir toute prise en masse facilitant en cela le stockage et le conditionnement des produits.

sur certaines faces cristallines inhibant ainsi leur croissance et conduisant à des formes particulières des cristaux de sulfate de calcium dihydraté.

2- TECHNIQUES EXPERIMENTALES

L'expérimentation a été conduite à 30°C sous courant d'azote en utilisant des produits chimiques de haute pureté (Fluka) et de l'eau bidistillée préalablement dégazée.

2-1- Préparation des semences de cristaux : Les cristaux de semence sont préparés à 30°C par addition lente d'une solution CaCl₂ 0,2M à une solution de sulfate de sodium 0,2 M dans KCl 0,2 M. Les cristaux obtenus sont maintenus pour mûrissement dans la solution mère pendant un mois. Le précipité est ensuite filtré sur Millipore 0,22 µm et séché à 70°C. Les cristaux formés de surface spécifique 1,0 m²·g⁻¹ (determiné par la méthode de B.E.T. à point unique avec un mélange azote-hélium 30/70) sont caractérisés par diffraction X (Philips PW 1050/70) et par spectroscopie infra-rouge (Perkin-Elmer 783).

2-2- Conduite d'une expérience de croissance : Le dispositif expérimental ainsi que le protocole retenu pour la réalisation d'une expérience de croissance sont identiques à ceux décrits dans un précédent travail [1]. L'addition d'ions magnésium sous forme de MgCl₂ est effectuée dans la solution sursaturée métastable de sulfate de calcium de départ.

Enfin d'expérience, les précipités obtenus sont filtrés sur Millipore de porosité 0,22 µm puis caractérisés par diffraction X (PHILIPS PW 1050/70) et par spectroscopie infra-rouge (Perkin-Elmer 783). Les cristaux de sulfate de calcium obtenus sont aussi examinés par microscopie électronique à balayage sur un appareil Jeol JSM III avec comme seule préparation de l'échantillon -avant observation- une métallisation avec de l'or. Enfin l'analyse chimique des solides obtenus est réalisée en déterminant leurs teneurs d'une part en calcium et magnésium par spectroscopie d'absorption atomique (Perkin-Elmer 103) [12] et d'autre part en sulfate par gravimétrie sous forme de BaSO₄ [12].

3- RESULTATS ET DISCUSSIONS

Les concentrations des différentes espèces ioniques dans la solution sursaturée sont déterminées selon une méthodologie proposée par Nancollas [13] à partir des équations de conservation de la matière, d'électroneutralité et des constantes
d'équilibres des différents complexes susceptibles de se former en solution. A 30°C, les constantes thermodynamiques des différents complexes susceptibles de se former sont : \(K(\text{CaSO}_4) = 10^{2.34} \) [14], \(K(\text{NaSO}_4) = 10^{0.24} \) [15], \(K(\text{KSO}_4) = 10^{0.57} \) [16], \(K(\text{HSO}_4) = 10^{2.10} \) [16] et \(K(\text{MgSO}_4) = 10^{2.16} \) [17].

Le produit de solubilité du sulfate de calcium est pris égal à 2,27. \(10^{-6} \) [18]. Les coefficients d'activité sont calculés à partir de l'expression de Davies [19].

3-1- **Étude Cinétique** : Les expériences de cristallisation (tableau 1) ont été conduites à 30°C à la sursaturation \(\sigma = 0.38 \) en présence de 10 mg de semences en faisant évoluer la concentration totale en ions magnésium de 1,0 à 9,0 mM tout en maintenant en cours d'expérimentation le produit ionique sensiblement constant. Rappelons que la sursaturation relative \(\sigma \) est définie par la relation : \(\sigma = S-1 \) dans laquelle \(S \) désigne le rapport de sursaturation tel que : \(S = \frac{IP}{K_{SO}} \) \(^{1/2} \). IP et \(K_{SO} \) désignent respectivement le produit ionique de la solution et le produit de solubilité du sulfate de calcium dihydraté à l'équilibre. \(\sqrt{v} \) représente le nombre d'ions par unité formule soit 2 dans le cas du gypse.

TABLEAU 1 : Croissance du sulfate de calcium dihydraté en présence d'ions magnésium.

<table>
<thead>
<tr>
<th>n° d'expérience</th>
<th>(10^3 T \text{Ca}) (M)</th>
<th>(10^3 \text{KCl}) (M)</th>
<th>(10^3 T \text{Mg}) (M)</th>
<th>(10^5 \text{IP}) (mol.l(^{-1}))(^{1/2})</th>
<th>Solution titrante (10^3 T \text{Ca}) (M)</th>
<th>(10^5 R) (mol.mm(^{-1}).m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.5</td>
<td>180</td>
<td>0</td>
<td>4.32</td>
<td>100.0</td>
<td>5.60</td>
</tr>
<tr>
<td>14 b</td>
<td>37.5</td>
<td>180</td>
<td>1.0</td>
<td>4.30</td>
<td>100.0</td>
<td>3.75</td>
</tr>
<tr>
<td>53 e</td>
<td>37.5</td>
<td>175</td>
<td>2.0</td>
<td>4.23</td>
<td>100.0</td>
<td>3.32</td>
</tr>
<tr>
<td>52 e</td>
<td>37.5</td>
<td>170</td>
<td>3.60</td>
<td>4.30</td>
<td>100.0</td>
<td>2.62</td>
</tr>
<tr>
<td>15 b</td>
<td>39.0</td>
<td>170</td>
<td>5.10</td>
<td>4.35</td>
<td>101.0</td>
<td>2.32</td>
</tr>
<tr>
<td>16 a</td>
<td>38.5</td>
<td>160</td>
<td>9.0</td>
<td>4.35</td>
<td>102.0</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Les courbes de variation du volume de réactifs tiritant en fonction du temps obtenues sur l'enregistre sont portées sur la figure 1.
A ce stade, il y a lieu de retenir que les courbes obtenues en présence d'ions magnésium ont une allure identique à celle concernant le milieu exempt d'ions magnésium avec toutefois des pentes différentes fonction de la quantité d'ions magnésium introduite.
A partir des courbes de la figure 1, on a calculé la vitesse de croissance suivant la relation (1):

\[\frac{dn}{dt} = \left(\frac{V_1 - 2T_{Ca}}{dt} \right) dV \]

\(dn \) désigne le nombre de moles de gypse formé pendant un temps \(dt \), \(V_1 \) la concentration en ions \(Ca^{2+} \) de la solution titrante, \(T_{Ca} \) la concentration en calcium, \(dV \) le volume ajouté par une burette en un temps \(dt \).

Figure 1: Variation du volume (ml) de l'une des solutions titrantes en fonction du temps des différentes expériences de croissance en présence de magnésium.

Par ailleurs, en admettant que la croissance cristalline se développe selon une symétrie sphérique sans variation de la surface spécifique du cristal c'est-à-dire que l'aire du cristal suit une variation du type [20]:

\[A = A_0 \left(\frac{m}{m_0} \right)^{0.5} \]
Il est possible de déterminer les vitesses propres de cristallisation à partir de l'expression :

\[R = \frac{1}{A} \frac{dn}{dt} = \frac{y_1 \cdot 2T_{ca}}{A_o \left(\frac{m}{m_0} \right)^{2/3}} \]

dans laquelle \(m \) et \(m_0 \) représentent respectivement les masses des cristaux à l'instant \(t \) et \(t = 0 \) et \(A \) l'aire des cristaux de masse \(m_0 \). Sur la figure 2 sont portées les courbes déduites de la figure 1 en tenant compte de la correction de surface liée à l'accroissement de masse. Compte tenu de la répétition de l'expérimentation pour chaque valeur de la concentration en ions magnésium, nous avons fait figurer dans le tableau 1 les valeurs moyennes \(R \) de la vitesse de cristallisation.

Figure 2 : Courbes déduites de celles de la figure 1 en tenant compte de la correction de surface liée à l'accroissement de masse.

La figure 2 met en évidence l'effet retardateur des ions magnésium sur la croissance du sulfate de Calcium. En effet la vitesse de croissance diminue rapidement aux faibles teneurs en magnésium et tend asymptotiquement vers une valeur minimale aux fortes teneurs comme l'illustre la figure 3.
Figure 3 : Variation de la vitesse de croissance du gypse en fonction des concentrations totales en magnésium.

En ce qui concerne le modèle de croissance, il est généralement admis qu'en présence d'additifs les lois de croissance observées en milieu pur ne sont pas modifiées et par conséquent les modèles de croissances conservés [20,21]. Aussi, et bien que cette étude n'ait été conduite qu'à une seule sursaturation, nous admettons que le modèle de Nielsen retenu pour rendre compte de la loi de croissance déterminée en milieu pur [1] reste ici applicable. Dans ces conditions, on est en mesure de relier l'effet inhibiteur observé à la croissance qui se développe en spirales par intégration des unités de croissance dans les sites de croissance. Il suffit, en effet, que l'additif, ici les ions magnésium, s'adsorbe sélectivement sur certains sites sans qu'il ne soit nécessaire d'atteindre la formation d'une monocouche complète d'ions magnésium pour observer un effet de blocage partiel voire totale de la croissance. Un effet retardateur du même type a été mis en évidence cinétiquement par la même méthode d'étude par Van Rosmalen [10] pour la croissance du sulfate de calcium en présence d'ions Cu$^{2+}$ et Zn$^{2+}$.

Afin de préciser le modèle d'adsorption des ions magnésium sur le sulfate de calcium, nous avons porté à l'instar de Bliznakov [23] R/R_{Mg} en fonction de $(T_{\text{Mg}})^{-1}$ (figure 4) : R et R_{Mg} désignent respectivement la vitesse de croissance en l'absence et en présence d'ions magnésium.
Figure 4 : Variation de \(R \left(R - R_{Mg} \right)^{-1} \) en fonction de \((T \cdot Mg)^{-1} \).

La droite des moindres carrés de pente 1,74 avec un facteur de corrélation de 0,98 porte à croire que l'isotherme d'adsorption des ions magnésium est du type Langmuir avec adsorption des ions de magnésium sur les kinks présents sur le cristal. Ce type d'adsorption est connu pour être très efficace car il suffit d'un faible recouvrement de surface par l'impureté pour bloquer la croissance [20].

3-2 - Analyses et Observations du produit formé : Les résultats d'analyse chimique du solide formé, par les méthodes déjà citées, sont rassemblés dans le tableau 2.

On note que les pourcentages pondéraux correspondent à la stoechiométrie du sulfate de calcium. De plus, les teneurs en ions magnésium dans le solide sont à considérer comme négligeables. Il convient, d'ailleurs, de préciser que le dosage des ions Mg\(^{2+}\) dans des aliquotes de la solution prélevées à différents degrés d'avancement de la réaction n'ont pas permis de distinguer des variations significatives des teneurs de la solution en ions Mg\(^{2+}\) au cours du temps. Dans ces conditions et à partir de l'analyse chimique, on est en mesure de convenir que les solides obtenus sont constitués uniquement de sulfate de calcium dihydraté.
TABLEAU 2 : Résultats d'analyse chimique du solide formé en présence d'ions magnésium (% pondéral).

<table>
<thead>
<tr>
<th>N° d'expérience</th>
<th>% Ca</th>
<th>% Mg</th>
<th>% S</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 a</td>
<td>23,03</td>
<td>0,013</td>
<td>17,94</td>
</tr>
<tr>
<td>52 a</td>
<td>23,54</td>
<td>0,023</td>
<td>16,18</td>
</tr>
<tr>
<td>15 b</td>
<td>22,5</td>
<td>0,020</td>
<td>18,20</td>
</tr>
<tr>
<td>53 c</td>
<td>23,8</td>
<td>0,013</td>
<td>19,34</td>
</tr>
</tbody>
</table>

L'examen des diagrammes des rayons X ainsi que celui des spectres d'adsorption infra-rouge militent dans les sens des conclusions de l'analyse chimique. L'observation par M.E.B montre que les solides obtenus se présentent sous forme d'aiguilles et de plaquettes. Le présence de l'une ou de l'autre forme dépend de la quantité de magnésium introduite dans la solution. Ainsi le solide de l'échantillon n°1 exempt de magnésium (Figure 5-a) est formé essentiellement d'aiguilles. La présence d'une faible teneur de magnésium (1mM) induit la formation de quelques plaquettes à côté d'aiguilles (Figure 5-b). Pour une teneur de 5mM, on observe pratiquement autant d'aiguilles que de plaques (Figure 5-c). Aux concentrations élevées en ions magnésium (9mM), le solide est constitué d'un enchevêtrement d'aiguilles de différentes longueurs et de plaques (Figure 5-d).
En conclusion et pour les conditions opératoires retenues l'addition d'ions magnésium dans un milieu de croissance du sulfate de calcium dihydraté se traduit par un effet inhibiteur impliquant un mécanisme d'adsorption de l'additif sur le cristal.
REFERENCES