

RÉDUCTION DE V₂O₅ EN VO₂ (B) PAR L'HEXANE-1,6-DIOL

N. Etteyeb, Z. Idoudi, N. Gharbi*

Laboratoire de Chimie de la Matière Condensée, Institut Préparatoire aux Études d'Ingénieur de Tunis, 2 rue Jawaher Lel Nehru, 1008 Montfleury, Tunis, Tunisie

(Reçu le 4 Juillet 2005, accepté le 21 Septembre 2006)

RESUME: L'oxyde de vanadium VO₂ (B) a été préparé, pur et bien cristallisé, par la voie hydrothermale (48 heures, 180°C et pression autogène) par réaction, dans l'eau, du V₂O₅ cristallisé avec l'hexane-1,6-diol HO-(CH₂)₆-OH, dans le rapport molaire 1: 1. Cette phase a été caractérisée par diffraction des rayons X sur poudre, spectroscopie infrarouge, résonance paramagnétique électronique, analyse thermique, la technique Brunauer-Emmet-Teller et microscopie électronique à balayage.

Mots-clés: Synthèse hydrothermale, V₂O₅, hexane-1,6-diol, VO₂ (B) cristallisé.

ABSTRACT: The vanadium oxide VO_2 (B), pure and well crystallized, was prepared by hydrothermal method (48 hours, 180° C and autogenous pressure). Diol hexane-1,6-diol HO-(CH₂)₆-OH has been used to reduce, in water, crystallized V_2O_5 , in the molar ratio 1:1. The product VO_2 (B) was characterized by powder X-ray diffraction, infrared spectroscopy, Paramagnetic Electronic Resonance, thermal analysis, Brunauer-Emmet-Teller technique and Scanning Electronic Microscopy.

Keywords: hydrothermal synthesis, V₂O₅, hexane-1,6-diol, VO₂ (B) crystallized.

I- INTRODUCTION

Le dioxyde de vanadium existe sous plusieurs formes allotropiques parmi lesquelles la variété allotropique B (VO₂ (B)). Cette phase présente des caractéristiques chimiques et structurales intéressantes. Elle est utilisée pour fabriquer des cathodes de batterie au lithium [1,2], pour élaborer des couches minces [3,4] ou pour catalyser des réactions d'oxydation [5].

Le VO₂(B) a été préparé à des températures assez élevées, à partir de différents précurseurs inorganiques tels que le VO(OH)₂ ou le V₂O₅ et de réducteurs organiques ou inorganiques comme 1,4-dihydroxybenzène, H₂ ou SO₂. L'élaboration de ce produit se fait soit par précipitation soit par la méthode hydrothermale [6-11].

Le présent travail porte sur une élaboration simple et directe de la phase VO₂ (B) pure et bien cristallisée, à partir du pentoxyde de vanadium V₂O₅ cristallisé et de l'hexane-1,6-diol.

Le produit a été caractérisé par plusieurs techniques telles la diffraction des rayons X sur poudre, la spectroscopie infrarouge, la résonance paramagnétique électronique, l'analyse thermique, la mesure de surface spécifique par la méthode de Brunauer-Emmet-Teller (BET) et la microscopie électronique à balayage.

II- PARTIE EXPERIMENTALE

Le diffractomètre des rayons X est un appareil Philips 1820, utilisant la radiation du Cu (λ = 1,5418 Å) et un monochromateur en graphite.

^{*} correspondant

L'appareil de spectroscopie infrarouge à transformée de Fourrier est de type: Magana-IR spectrometer 550 Nicolet, fonctionnant dans le domaine 4000-400 cm⁻¹.

Les analyses thermiques ont été réalisées à l'aide d'un appareil Universal V_{3.0}G TA_{INSTRUMENTS} SDT 2960 permettant l'enregistrement simultané des courbes d'analyse thermique et thermogravimétrique du solide. La vitesse de montée en température est de 5°C/mn.

Les spectres RPE ont été enregistrés sur un appareil Bruker ESP 300, travaillant à température variable.

La mesure de surface spécifique par la méthode BET a été réalisée sur un appareil micrometrics ASAP 2000.

L'observation au microscope électronique à balayage a été réalisée avec un instrument Cambridge-Stereoscan 120.

1- PREPARATION

Le mélange réactionnel, formé de pentoxyde de vanadium V₂O₅ (0,153 g, produit Touzart et Matignon de pureté 99,5%) d'hexane-1,6-diol HO-(CH₂)₆-OH (0,1 g) et d'eau distillée (5 mL) dans des rapports molaires respectifs 1 : 1 : 328, est placé dans l'enceinte en teflon d'une bombe hydrothermale. Celle-ci est chauffée pendant 48 heures, dans l'étuve, à la température de 180°C sous pression autogène. Le pH initial est de l'ordre de 7.

On obtient un système biphasé constitué par un dépôt noir-verdâtre et un liquide clair et jaunâtre de pH égal à celui du départ.

Le solide est récupéré par filtration sur fritté, lavé à l'eau et à l'acétone puis séché dans l'étuve à 60°C.

2- CARACTERISATION

A- Diffraction des rayons X sur poudre (RX)

Le diffractogramme des RX sur poudre du produit solide est présenté sur la figure 1.

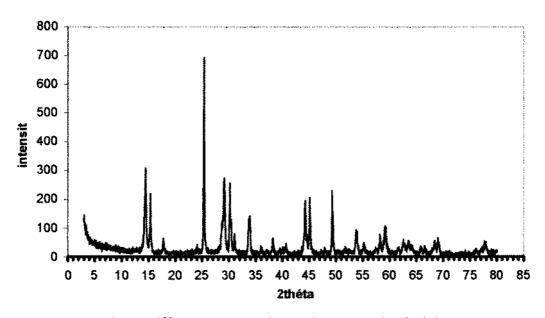


Fig.1: Diffractogramme de RX du composé VO₂(B)

On observe sur ce spectre des pics fins et intenses, caractéristiques d'une phase bien cristallisée. Son analyse conduit aux valeurs regroupées dans le tableau ci-dessous. Elles sont caractéristiques de la phase VO_2 (B) pure. La comparaison de ces résultats à ceux de la littérature [7] plaide en faveur du système cristallin monoclinique avec un groupe de symétrie $C_{2/m}$. Les paramètres calculés sont: a = 12,039(7) Å; b = 3,687(2) Å; c = 6,410(4) Å et $\beta = 106,99(3)^\circ$.

Tableau comparatif

2θ _{obs} (°)	28 _{ref} (°)[7]	Tableau co	d _{obs} (Å)	$d_{ref}(A)[7]$	hkl
14,4380	14,383	44,57	6,1347	6,1528	001
15,3780	15,308	31,84	5,7618	5,7832	200
17,7985	17,709	9,40	4,9833	5,0057	201
24,0985	23,977	6,37	3,6929	3,7083	201
25,3580	25,238	100,00	3,5123	3,5259	110
28,6985	28,589	17,95	3,1106	3,1197	$\frac{-}{2}$ 02
29,1185	29,000	39,65	3,0667	3,0764	002
30,1780	30,041	37,05	2,9614	2,9721	4 01
30,4180	30,292	18,67	2,9385	2,9481	111
31,0580	30,898	11,72	2,8794	2,8916	400
33,6780	33,531	19,10	2,6612	2,6703	310
33,8980	33,753	20,69	2,6444	2,6533	311
35,9380	35,849	5,64	2,4988	2,5028	402
37,0380	37,000	3,76	2,4271	2,4275	Ī12
38,1580	38,020	9,55	2,3584	2,3647	401
39,6150	39,372	4,63	2,2748	2,2866	311
40,0580	39,950	5,06	2,2519	2,2548	312
40,7580	40,562	6,80	2,2138	2,2222	112
44,2780	44,119	28,51	2,0456	2,0509	003
45,1380	44,949	29,81	2,0086	2,0149	601
47,2180	47,103	3,62	1,9249	1,9277	900
47,9180	47,771	4,76	1,8984	1,9023	602
49,3380	49,181	33,29	1,8470	1,8510	020
51,9380	51,514	4,49	1,7605	1,7725	021
53,7780	53,613	13,89	1,7045	1,7080	113
53,9580	53,777	13,02	1,6993	1,7032	601
55,2780	54,986	7,38	1,6618	1,6685	603
57,3975	57,257	4,92	1,6054	1,6076	204
58,2380	58,110	11,58	1,5842	1,5860	022
59,1780	58,964	15,77	1,5612	1,5651	711
61,7980	61,394	4,92	1,5012	1,5088	801
62,6180	62,363	8,97	1,4835	1,4877	422
63,5580	63,929	8,39	1,4688	1,4673	314
64,0380	63,802	6,22	1,4540	1,4576	421
65,7980	65,622	5,50	1,4193	1,4215	604
66,4980	68,354	5,79	1,4060	1,4076	713

2θ _{obs} (°)	2θ _{ref} (°)[7]	I/I _{0 obs}	d _{obs} (Å)	d _{ref} (Å)[7]	hkl
68,4580	68,188	8,25	1,3705	1,3741	023
69,0580	68,814	9,55	1,3600	1,3631	- 621
76,0780	75,842	4,34	1,2511	1,2533	621
77,2580	77,093	4,76	1,2349	1,2361	603
77,9380	77,767	6,67	1,2258	1,2270	130

Cette étude par diffraction des RX montre que l'utilisation de l'hexane-1,6-diol comme réducteur de V_2O_5 a permis l'obtention du VO_2 (B) pur et de cristallinité élevée. Celle-ci est nettement meilleure que celle rapportée dans la littérature [6]. Cette réduction du V_2O_5 en VO_2 (B) a été réalisée sans la présence de la phase VO_2 (A) [7] et sans passer par des composés intermédiaires d'oxyde de vanadium [8,10].

A- Spectroscopie infrarouge (IR)

La figure 2 représente le spectre infrarouge du produit obtenu. Il est semblable à ceux la littérature [6, 10]. Ce résultat confirme l'étude de diffraction des rayons X.

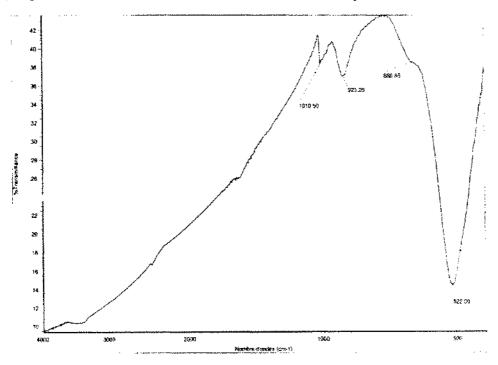


Fig. 2: Spectre IR du VO₂ (B)

B- Résonance Paramagnétique Electronique (RPE)

Les spectres RPE du composé $VO_2(B)$ (Fig. 3) sont enregistrés en bande X aux températures 27°C (v = 9.245 GHz) et -196°C (v = 9.235 GHz).

On constate qu'à basse température (Fig. 3a) le VO_2 (B) donne un spectre mal résolu dans lequel on distingue les composantes parallèles et perpendiculaires caractéristiques d'ion V^{4+} , se trouvant à la surface, en symétrie axiale. A ce spectre hyperfin se superpose un deuxième signal isotrope large correspondant à la masse d'oxyde. L'analyse du spectre hyperfin donne les valeurs suivantes des g et de A: $g_{//} = 1,934$; $g_{\perp} = 1,977$; $g_{iso} = (2 g_{//} + g_{\perp})/3 = 1,936$ et $A_{//} = -200$ Gauss. Ces valeurs sont caractéristiques d'ions V^{4+} (S = 1/2 et I = 7/2) dans un environnement octaédrique.

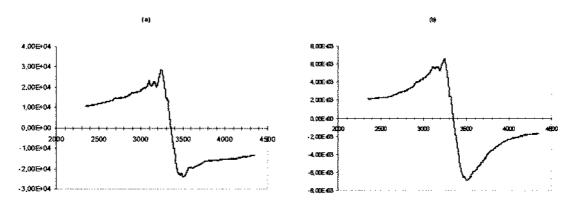


Fig.3: Spectres RPE du VO₂(B) à -196°C (a) et 27°C (b).

Le spectre enregistré à 27°C (Fig. 3b) est semblable au précédent (-196°C). Cependant, on constate une augmentation des largeurs des raies. Cela semble être lié à une faible délocalisation des électrons d.

C- Analyses thermique et thermogravimétrique (ATG-ATD)

On relève sur la courbe d'analyse thermogravimétrique ATG (Fig. 4), réalisée sous oxygène, deux variations de masse :

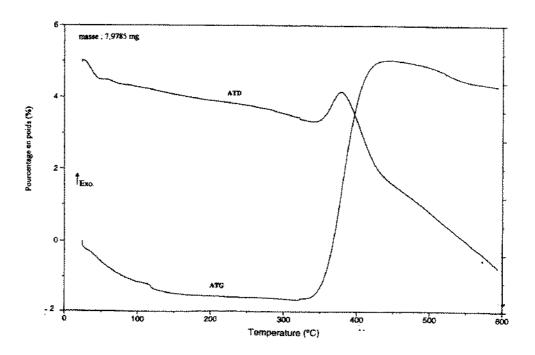


Fig.4: Courbes d'analyse thermique (ATD) et thermogravimétrique (ATG) couplées de VO₂(B)

* La première est une diminution de l'ordre de 1,5 % qui commence dès la température ambiante et prend fin vers 150°C. Elle est attribuée aux départs des molécules faiblement liées, simplement adsorbées à la surface du matériau, qui peuvent être les molécules du réducteur ou de la molécule oxydée formée ou de l'eau.

La courbe d'analyse thermique différentielle ATD (Fig. 4) montre des accidents endothermiques ayant deux minima aux environ de 50°C et 70°C. Ces phénomènes rendent compte de la perte de masse observée en ATG.

* La deuxième correspond à un gain, de l'ordre de 6,7 %, compris entre 330 et 448°C. On l'a attribuée à une oxydation du VO_2 (B). Cette oxydation peut conduire aux phases V_6O_{13} , V_3O_7 ou V_2O_5 dont les gains de masse respectifs sont: 3,21 %, 6,43 % et 9,65 %. Selon ces pourcentages, le VO_2 (B) s'est oxydé vraisemblablement en V_3O_7 .

Le phénomène est confirmé, en ATD, par l'apparition d'un pic exothermique dont le maximum est situé vers 378°C.

D- Mesure de surface spécifique et volume poreux

La méthode BET a permis de déterminer la surface spécifique du composé VO₂ (B), qui est de l'ordre de 15 m².g⁻¹.

La forme de l'isotherme d'adsorption désorption de N₂ (Fig. 5) obtenue est du type II. Cela permet de suggérer que le composé VO₂ (B) est non poreux ou macroporeux.

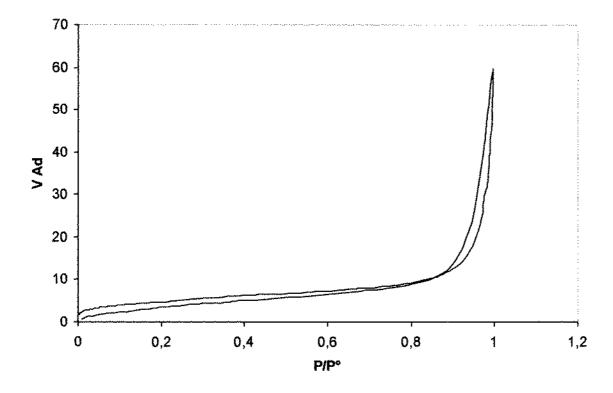


Fig.5. Isotherme du VO₂(B) par BET.

E- Microscopie électronique à balayage (MEB)

L'observation du matériau au microscope électronique à balayage (Fig. 6) montre qu'il est formé d'enchevêtrements d'aiguilles et de lames de 1 à 10 µm de longueur et de section variant entre 0,I et 1 µm.

Fig. 6: Photographie de MEB du VO₂(B).

III- DISCUSSION

Cette étude a permis de réduire, pour la première fois, le V₂O₅ cristallisé par l'hexane-1,6-diol. La phase obtenue est VO₂ (B) pure et bien cristallisée.

La caractérisation a révélé que le matériau final est non poreux ou macroporeux, constitué d'aiguilles et de lames de longueurs micrométriques et de sections nanométriques.

La comparaison de nos résultats avec ceux de la littérature (Tableau ci-dessous) montre que la forme et les dimensions des cristaux dépendent du réducteur de V_2O_5 . En effet, la réduction par l'hydroquinone [6] a fourni des cristaux parallélépipédiques de dimensions $10\times4\times3~\mu\text{m}^3$, alors qu'avec l'hexane-1,6-diol, elle a conduit à des lames de largeurs et d'épaisseurs plus faibles, environ $10\times1\times0,1~\mu\text{m}^3$ et des aiguilles de l'ordre de $10~\mu\text{m}$ de longueur et $0,1~\mu\text{m}$ de diamètre. Lorsque le réducteur est H_2 , NH_3 [8,10] le matériau est sous forme d'aiguilles, mais, beaucoup plus courtes (environ $1~\mu\text{m}$).

On constate aussi que la surface spécifique du matériau VO₂ (B) dépend du réducteur utilisé. En effet, lorsque celui-ci est H₂, NH₃ [8] ou l'hydroquinone [6] ou l'hexane-1,6-diol, cette surface est, respectivement, égale à 30, 20 ou 15 m²g⁻¹.

L'analyse thermique a montré que dans le cas de l'hexanediol, les molécules sont beaucoup plus faiblement liées que dans le cas de l'hydroquinone [6], elles sont simplement adsorbées à la surface. Ce phénomène est probablement dû au fait que les molécules sont piégées dans les pores du matériau (cas de l'hydroquinone) qui est plus poreux.

L'oxydation de l'hexane-1,6-diol par le V₂O₅ cristallisé conduit probablement à un dialdéhyde selon les équations chimiques suivantes:

HOCH₂-(CH₂)₄-CH₂OH
$$\stackrel{\text{oxydation}}{\longrightarrow}$$
 O=CH-(CH₂)₄-CH=O + 4H⁺ + 4e⁻ réduction $\stackrel{\text{réduction}}{\longrightarrow}$ 2 VO₂ + H₂O)

 $HOCH_{2}-(CH_{2})_{4}-CH_{2}OH + 2 V_{2}O_{5}$ \longrightarrow $O=CH-(CH_{2})_{4}-CH=O+4 VO_{2}+2 H_{2}O.$

La réaction globale met en évidence l'absence de protons ce qui confirme la non variation du pH du mélange réactionnel.

Tableau comparatif des conditions de réduction de V₂O₅ en VO₂ (B) et des caractéristiques du

		produit final		
	Présent travail	SEDIRI et	THEOBALD et	Remarques
		co. [6]	co. [8]	
Précurseurs	Hexane-1,6-diol	Hydroqui-	H ₂ ou NH ₃ ou S	* non précisés
organiques		none	ou composés	
			organiques*	
Température	180°C	180°C	210-400°C	
Temps de séjour de la bombe	48 heures	96 heures	non précisé	
n(org)/n(V ₂ O ₅)	1/1	1/1	non précisé	n: nombres de moles
$n(H_2O)/n(V_2O_5)$	328/1	309/1	non précisé	org: précurseur organique
Formes des particules	lames et fibres	Parellèle- pipèdes	aiguilles*	* réducteur non précisé
Dimensions	$10 \times 1 \times 0.1 \mu m^3$	10 x 4 x 3	longueur*:	* réducteur non
	et $10 \times 0,1 \mu \text{m}^2$	μm³	lμm	précisé
Surface spécifique	15 m ² .g ⁻¹	20 m ² .g ⁻¹	30 m ² .g ⁻¹ *	* réducteur non précisé
Aspect et couleur du produit	poudre noire-verdâtre	poudre noire	poudre noire	-

REFERENCES

- [1] J.C. BADOT, L. BINET, N. BAFFIER, R. MORINEAU and A. FOURRIER-LAMER, Solid. State Ionics, 1992, 35, 343.
- [2] M. ZHANG and J.R. DAHN, J. Electrochem. Soc., 1996, 143(9), 2730.
- [3] F. BETEILLE, L. MAZEROLLES and J. LIVAGE, Mater. Res. Bull., 1999, 34(14/15), 2177.
- [4] I. MARTIN, J. Oberflaechentech., 2000, 40(3), 86.
- [5] G. SUSS-FINK, S. STANSIS, B. SHUL'PIN GEORGIY, V. NIZOVA GALINA, H. STOECKLI-EVANS, A. EELS, C. BOBILLIER and S. CLAUDE, J. Chem. Soc., Dalton Trans, 1999, 18, 3169.
- [6] F. SEDIRI, N. ETTEYEB, N. GHARBI, J. Soc. Chim. Tunisie, 2003, 5(2), 305.
- [7] Y. OKA, T. YAO and N. YAMAMOTO, J. Solid State Chem., 1993, 105, 271.
- [8] F. THEOBALD, R. CABALA et J. BERNARD, J. Solid State Chem., 1976, 17, 431.
- [9] F. THEOBALD, J. Less-Common Met., 1977, 53, 55.
- [10] F. THEOBALD, Thèse d'Etat, A.O. 3998, Besançon Nº 96, 1er fevrier 1975.
- [11] D. HAGRMAN, J. ZUBIETA, C. J. WARREN, L. M. MEYER, M. M. J. TREACY and R. C. HAUSHALTER, J. Solid State Chem., 1998, 138, 178.